Diagenode

Ultra-low-input native ChIP-seq for rare cell populations


Brind'Amour J, Liu S, Hudson M, Chen C, Karimi MM, Lorincz MC

Combined chromatin immunoprecipitation and next-generation sequencing (ChIP-seq) has enabled genome-wide epigenetic profiling of numerous cell lines and tissue types. A major limitation of ChIP-seq, however, is the large number of cells required to generate high-quality data sets, precluding the study of rare cell populations. Here, we present an ultra-low-input micrococcal nuclease-based native ChIP (ULI-NChIP) and sequencing method to generate genome-wide histone mark profiles with high resolution from as few as 10(3) cells. We demonstrate that ULI-NChIP-seq generates high-quality maps of covalent histone marks from 10(3) to 10(6) embryonic stem cells. Subsequently, we show that ULI-NChIP-seq H3K27me3 profiles generated from E13.5 primordial germ cells isolated from single male and female embryos show high similarity to recent data sets generated using 50-180 × more material. Finally, we identify sexually dimorphic H3K27me3 enrichment at specific genic promoters, thereby illustrating the utility of this method for generating high-quality and -complexity libraries from rare cell populations.

Tags
Antibody
H3K27me3 (C15410069)

Share this article

Published
January, 2015

Source

活动

  • AACR 2024
    San Diego, California, USA
    Apr 5-Apr 10, 2024
 查看所有活动

新闻

 查看所有新闻


The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics