Diagenode

53BP1 Alters the Landscape of DNA Rearrangements and Suppresses AID-Induced B Cell Lymphoma.


Jankovic M, Feldhahn N, Oliveira TY, Silva IT, Kieffer-Kwon KR, Yamane A, Resch W, Klein I, Robbiani DF, Casellas R, Nussenzweig MC

Deficiencies in factors that regulate the DNA damage response enhance the incidence of malignancy by destabilizing the genome. However, the precise influence of the DNA damage response on regulation of cancer-associated rearrangements is not well defined. Here we examine the genome-wide impact of tumor protein P53-binding protein 1 (53BP1) deficiency in lymphoma and translocation. While both activation-induced cytidine deaminase (AID) and 53BP1 have been associated with cancer in humans, neither AID overexpression nor loss of 53BP1 is sufficient to produce malignancy. However, the combination of 53BP1 deficiency and AID deregulation results in B cell lymphoma. Deep sequencing of the genome of 53BP1(-/-) cancer cells and translocation capture sequencing (TC-Seq) of primary 53BP1(-/-) B cells revealed that their chromosomal rearrangements differ from those found in wild-type cells in that they show increased DNA end resection. Moreover, loss of 53BP1 alters the translocatome by increasing rearrangements to intergenic regions.

Tags
DNA shearing
Bioruptor

Share this article

Published
January, 2013

Source

活动

  • APHL 2024
    Milwaukee, Wisconsin, USA
    May 6-May 9, 2024
 查看所有活动

新闻

 查看所有新闻


The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics