Diagenode

Transcription factor EGR2 controls homing and pathogenicity of T17cells in the central nervous system.


Gao Y. et al.

CD4 T helper 17 (T17) cells protect barrier tissues but also trigger autoimmunity. The mechanisms behind these opposing processes remain unclear. Here, we found that the transcription factor EGR2 controlled the transcriptional program of pathogenic T17 cells in the central nervous system (CNS) but not that of protective T17 cells at barrier sites. EGR2 was significantly elevated in myelin-reactive CD4 T cells from patients with multiple sclerosis and mice with autoimmune neuroinflammation. The EGR2 transcriptional program was intricately woven within the T17 cell transcriptional regulatory network and showed high interconnectivity with core T17 cell-specific transcription factors. Mechanistically, EGR2 enhanced T17 cell differentiation and myeloid cell recruitment to the CNS by upregulating pathogenesis-associated genes and myelomonocytic chemokines. T cell-specific deletion of Egr2 attenuated neuroinflammation without compromising the host's ability to control infections. Our study shows that EGR2 regulates tissue-specific and disease-specific functions in pathogenic T17 cells in the CNS.

Tags
CUT&Tag

Share this article

Published
August, 2023

Source

Products used in this publication

  • default alt
    C01070001
    pA-Tn5 Transposase - loaded

Events

  • London Calling 2024
    London, UK
    May 21-May 24, 2024
  • Symposium of the Young Scientist Association
    Vienna, Austria
    May 28-May 29, 2024
  • ESHG 2024
    Berlin, Germany
    Jun 1-Jun 4, 2024
  • CLEPIC 2024
    Warsaw, Poland
    Jun 5-Jun 7, 2024
  • EACR 2024
    Rotterdam, Netherlands
    Jun 10-Jun 13, 2024
  • Chromatin meets South 2024
    Marseille, France
    Jun 13-Jun 14, 2024
 See all events

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics