Diagenode

Reader domain specificity and lysine demethylase-4 family function


Su Z. et al.

The KDM4 histone demethylases are conserved epigenetic regulators linked to development, spermatogenesis and tumorigenesis. However, how the KDM4 family targets specific chromatin regions is largely unknown. Here, an extensive histone peptide microarray analysis uncovers trimethyl-lysine histone-binding preferences among the closely related KDM4 double tudor domains (DTDs). KDM4A/B DTDs bind strongly to H3K23me3, a poorly understood histone modification recently shown to be enriched in meiotic chromatin of ciliates and nematodes. The 2.28 Å co-crystal structure of KDM4A-DTD in complex with H3K23me3 peptide reveals key intermolecular interactions for H3K23me3 recognition. Furthermore, analysis of the 2.56 Å KDM4B-DTD crystal structure pinpoints the underlying residues required for exclusive H3K23me3 specificity, an interaction supported by in vivo co-localization of KDM4B and H3K23me3 at heterochromatin in mammalian meiotic and newly postmeiotic spermatocytes. In vitro demethylation assays suggest H3K23me3 binding by KDM4B stimulates H3K36 demethylation. Together, these results provide a possible mechanism whereby H3K23me3-binding by KDM4B directs localized H3K36 demethylation during meiosis and spermatogenesis.

Tags
Antibody

Share this article

Published
November, 2016

Source

Products used in this publication

  • Antibody ChIP icon
    C15200183
    H3K36me3 Antibody

Events

  • London Calling 2024
    London, UK
    May 21-May 24, 2024
  • Symposium of the Young Scientist Association
    Vienna, Austria
    May 28-May 29, 2024
  • ESHG 2024
    Berlin, Germany
    Jun 1-Jun 4, 2024
  • CLEPIC 2024
    Warsaw, Poland
    Jun 5-Jun 7, 2024
  • EACR 2024
    Rotterdam, Netherlands
    Jun 10-Jun 13, 2024
  • Chromatin meets South 2024
    Marseille, France
    Jun 13-Jun 14, 2024
 See all events

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics