Diagenode

Nuclear fate of yeast snoRNA is determined by co-transcriptional Rnt1 cleavage


Pawel Grzechnik, Sylwia A. Szczepaniak, Somdutta Dhir, Anna Pastucha, Hannah Parslow, Zaneta Matuszek, Hannah E. Mischo, Joanna Kufel & Nicholas J. Proudfoot

Small nucleolar RNA (snoRNA) are conserved and essential non-coding RNA that are transcribed by RNA Polymerase II (Pol II). Two snoRNA classes, formerly distinguished by their structure and ribonucleoprotein composition, act as guide RNA to target RNA such as ribosomal RNA, and thereby introduce specific modifications. We have studied the 5ʹend processing of individually transcribed snoRNA in S. cerevisiae to define their role in snoRNA biogenesis and functionality. Here we show that pre-snoRNA processing by the endonuclease Rnt1 occurs co-transcriptionally with removal of the m7G cap facilitating the formation of box C/D snoRNA. Failure of this process causes aberrant 3ʹend processing and mislocalization of snoRNA to the cytoplasm. Consequently, Rnt1-dependent 5ʹend processing of box C/D snoRNA is critical for snoRNA-dependent methylation of ribosomal RNA. Our results reveal that the 5ʹend processing of box C/D snoRNA defines their distinct pathway of maturation.

Tags
Bioruptor

Share this article

Published
May, 2018

Source

Events

  • London Calling 2024
    London, UK
    May 21-May 24, 2024
  • Symposium of the Young Scientist Association
    Vienna, Austria
    May 28-May 29, 2024
  • ESHG 2024
    Berlin, Germany
    Jun 1-Jun 4, 2024
  • CLEPIC 2024
    Warsaw, Poland
    Jun 5-Jun 7, 2024
  • EACR 2024
    Rotterdam, Netherlands
    Jun 10-Jun 13, 2024
  • Chromatin meets South 2024
    Marseille, France
    Jun 13-Jun 14, 2024
 See all events

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics