Diagenode

Anticheckpoint pathways at telomeres in yeast


Ribeyre Cyril, Shore David

Telomeres hide (or ‘cap’) chromosome ends from DNA-damage surveillance mechanisms that arrest the cell cycle and promote repair, but the checkpoint status of telomeres is not well understood. Here we characterize the response in Saccharomyces cerevisiae to DNA double-strand breaks (DSBs) flanked by varying amounts of telomeric repeat sequences (TG1–3). We show that even short arrays of TG1–3 repeats do not induce G2/M arrest. Both Rif1 1 and Rif2 are required for capping at short, rapidly elongating ends, yet are largely dispensable for protection of longer telomeric arrays. Rif1 1 and Rif2 act through parallel pathways to block accumulation of both RPA and Rad24, activators of checkpoint kinase Mec1 1 (ATR). Finally, we show that Rif function is correlated with an ‘anticheckpoint’ effect, in which checkpoint recovery at an adjacent unprotected end is stimulated, and we provide insight into the molecular mechanism of this phenomenon.

Tags
Bioruptor
Chromatin Shearing
ChIP-qPCR
Antibody

Share this article

Published
February, 2012

Source

Products used in this publication

  • cut and tag antibody icon
    C15410082
    H3K79me1 Antibody
  • ChIP-seq Grade
    C15410051
    H3K79me2 Antibody
  • ChIP-seq Grade
    C15410068
    H3K79me3 Antibody

Events

  • APHL 2024
    Milwaukee, Wisconsin, USA
    May 6-May 9, 2024
 See all events

News

 See all news


The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics