IP-Star[®] Compact

1. About the protocol

The "Ideal_Library_Preparation" protocol on the IP-Star[®] is using the standard "Ideal Library Preparation kit" and reagents from Diagenode. The Ideal Library Preparation kit allows the preparation of indexed libraries of genomic or ChIP DNA.

It provides flexibility to prepare 1 to 32 libraries in one run starting with **5ng of DNA**. The whole protocol takes approximately 1h30. It allows you to prepare up to 96 libraries per day with 3 runs. At the end, you recover ligated products ready for amplification.

2. Workflow

diagendide

Innovating Epigenetic Solutions

3. Material required

a. Reagents & kits

Item	Supplier	Catalogue #	
iDeal Library Preparation Kit x24	Diagonada	C0E010020	
(incl. Index Primer Set 1)	Diagenoue	00010020	
iDeal Library Index Primer Set 2 (optional)	Diagenode	C05010021	
Agencourt [®] AMPure [®] XP Beads	Beckman Coulter [®]		
Fresh Ethanol 80%	Lab supplier		

b. Cconsumables

Item	Supplier	Catalogue #
200 μl tube strips (8 tubes/strip) + cap strips	Diagenode	C30020002
Tips (box)	Diagenode	C30040021
Tips (bulk)	Diagenode	C30040020

Europe - Diagenode s.a. / orders@diagenode.com / info@diagenode.com // North America - Diagenode Inc. / orders.na@diagenode.com / info.na@diagenode.com

IP-Star[®] Compact

4. IP-Star setup

- 1. Switch ON the IP-Star.
- 2. Select "Protocols" icon and then click on "Library prep".
- 3. Under "Library prep", select "Ideal_Library_Preparation".

Note:

If you plan to run between 1 and 8 samples, chose "Ideal_Library_Preparation_08" If you plan to run between 9 and 16 samples, chose "Ideal_Library_Preparation_16" If you plan to run between 17 and 24 samples, chose "Ideal_Library_Preparation_24" If you plan to run between 25 and 32 samples, chose "Ideal_Library_Preparation_32"

4. Setup the exact number of samples that you want to process.

Note:

The **Left Peltier Block** is now cooling down to 4°C to keep the enzymes and reagents cold.

5. Setup all the plastics on the platform according to the screen layout.

- 6. Fill TIP Rack 1 (and 2 if processing more than 8 samples) with tips according to the screen.
- 7. Fill Left and Right Peltier Blocks with 200 μ l tube strips according to the screen.

IP-Star® Compact

5. Reagents & Samples setup

Note:

Allow the reagent from "**Ideal Library Preparation kit**" to come at 4°C. Work on ice from this point.

- 8. Prepare the following mixes.
 - o Ideal Library End Prep Mix:

	#1	#8	# 16	# 24	# 32
iDeal Library End Repair/ dA-Tailing Enzyme Mix (green)	3 µl	24 µl	48 µl	48 µl	72 µl
iDeal Library End Repair/ dA-Tailing Buffer (green)	6.5 μl	52 µl	104 µl	156 µl	208 µl
TOTAL	9.5 μl	76 µl	152 µl	204 µl	280 µl

Note:

(red) TOTAL

 $55.5\,\mu l$ of DNA will be added later for each sample.

 Ideal Library Adaptor Ligation Mix:

 #1
 #8
 #16
 #24
 #32

 iDeal Library Ligation Master Mix (red)
 15 μl
 120 μl
 240 μl
 360μl
 480 μl

 iDeal Library Ligation Enhancer
 1 μl
 0 μl
 16 μl
 241 μl
 22 μl

1 μl

16 µl

- 9. Fill the Left Peltier Block with Ligation Mix according to the screen layout.
- 10. Fill the Left Peltier Block with 2.5 μl iDeal Library Adaptor for Illumina (red) according to the screen layout.

8 μl

128 µl

16 µl

256 µl

24 µl

384 µl

32 µl

512 µl

- 11. Fill the Left Peltier Block with 3 μl iDeal Library Uracil Excision Reagent (red) according to the screen layout.
- 12. Fill the Right Peltier Block with the 9.5 µl End Prep Mix according to the screen layout.
- 13. Add **55.5** µl of DNA in each sample according to the screen layout.

IP-Star[®] Compact

Ideal Library Preparation kit

14. Close the door and Run.

6. Size Selection of Adaptor-Ligated DNA

Please refer to the Ideal Library Preparation kit manual on page 7

7. Alternatively, Cleanup of Adaptor-ligated DNA without Size Selection

Please refer to the Ideal Library Preparation kit manual on page 8

8. Library Amplification

15. Mix the following components in sterile strip tubes

Adaptor Ligated DNA Fragments	23 µl
iDeal Library PCR Master Mix (blue)	25 µl
iDeal Library Index Primer* (blue)	1 µl
iDeal Universal PCR Primer* (blue)	1 µl
Total volume	50 µl

* These primers (Index Primer Set 1) are included. Index Primer Set 2 may be purchased separately (Cat. No. C05010021).

16. Transfer tubes to a pre-programmed thermal cycler and incubate as follows.

Cycle Step	Temp	Time	Cycles
Initial Denaturation	98°C	30 seconds	1
Denaturation	98°C	10 seconds	
Annealing	65°C	30 seconds	6 - 15*
Extension	72°C	30 seconds	
Final Extension	72°C	5 minutes	1
Hold	4°C	00	

* Suggestion: 6 PCR cycles for 1 µg DNA input 10 cycles for 50 ng, and 13-15 for 5 ng DNA input. Further optimization of PCR cycle number may be required