iDeal ChIP-qPCR kit

Cat. No. C01010180 (24 rxns)
Please read this manual carefully before starting your experiment
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Kit method overview & time table</td>
<td>5</td>
</tr>
<tr>
<td>Kit materials</td>
<td>6</td>
</tr>
<tr>
<td>Required materials not provided</td>
<td>7</td>
</tr>
<tr>
<td>Remarks before starting</td>
<td>9</td>
</tr>
<tr>
<td>Protocol</td>
<td>15</td>
</tr>
<tr>
<td>Example of results</td>
<td>32</td>
</tr>
<tr>
<td>Protocol for chromatin shearing analysis</td>
<td>34</td>
</tr>
<tr>
<td>FAQs</td>
<td>36</td>
</tr>
<tr>
<td>Related products</td>
<td>39</td>
</tr>
</tbody>
</table>
Introduction

Association between proteins and DNA has a major influence on gene transcription, epigenetic silencing and other nuclear processes which control many vital cellular functions. It is crucial to understand these interactions and the mechanisms by which they control and guide gene regulation pathways and cellular proliferation. Chromatin immunoprecipitation (ChIP) is a technique to analyze the association of proteins with specific genomic regions in intact cells. ChIP can be used to study changes in epigenetic signatures, chromatin remodeling and transcription regulator recruitment to specific genomic sites.

The iDeal ChIP-qPCR kit provides a robust ChIP protocol suitable for investigation of histones and other proteins such as transcriptional factors associated with chromatin from cells and tissues. The protocol involves protein-DNA cross-linking with formaldehyde, followed by cell lysis and fragmentation of the cross-linked chromatin. The subsequent immunoprecipitation of chromatin is performed with an antibody (user supplied) specific to a target protein. Protein A magnetic beads are used to isolate the protein-DNA complexes of interest, after which the immunoprecipitated DNA is eluted. The eluted DNA is ideal for qPCR analysis.

The iDeal ChIP-qPCR kit offers unique benefits:

- Fast and highly optimized protocol for ChIP-qPCR from cells and tissues
- Easy ChIP made faster and more reproducible with magnetic beads
- High yields with excellent specificity and sensitivity due to combination of Diagenode ChIP-grade antibodies
- Eluted DNA suitable for qPCR analysis
Kit method overview & time table

<table>
<thead>
<tr>
<th>STEP</th>
<th>Description</th>
<th>Time needed</th>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cell or tissue collection and DNA-protein cross-linking</td>
<td>30 minutes</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Cell lysis and chromatin shearing</td>
<td>1 to 2 hours</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Magnetic immunoprecipitation</td>
<td>Overnight</td>
<td>1-2</td>
</tr>
<tr>
<td>4</td>
<td>DNA isolation and decross-linking</td>
<td>30 minutes</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Quantitative PCR and data analysis prior to library preparation and Next-Generation Sequencing</td>
<td>2 to 3 hours</td>
<td>2</td>
</tr>
</tbody>
</table>

LEGEND

- Protein of interest
- DNA
- Magnetic bead
- Antibody
- Magnet
Kit materials

The iDeal ChIP-qPCR kit contains enough reagents to perform 4 chromatin preparations, 24 chromatin immunoprecipitations and 32 DNA isolations.

The kit content is described in Table 1. Upon receipt, store the components at the indicated temperatures.

Table 1. Components supplied with the iDeal ChIP-qPCR kit

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protease inhibitor cocktail</td>
<td>80 µl</td>
<td>-20°C</td>
</tr>
<tr>
<td>5% BSA (DNA free)</td>
<td>784 µl</td>
<td>-20°C</td>
</tr>
<tr>
<td>Proteinase K</td>
<td>32 µl</td>
<td>-20°C</td>
</tr>
<tr>
<td>Rabbit IgG</td>
<td>8 µg</td>
<td>-20°C</td>
</tr>
<tr>
<td>Glycine</td>
<td>8.8 ml</td>
<td>4°C</td>
</tr>
<tr>
<td>Shearing Buffer iS1b</td>
<td>9 ml</td>
<td>4°C</td>
</tr>
<tr>
<td>DiaMag protein A-coated magnetic beads</td>
<td>720 µl</td>
<td>4°C, DO NOT FREEZE</td>
</tr>
<tr>
<td>Wash Buffer iW1</td>
<td>8.4 ml</td>
<td>4°C</td>
</tr>
<tr>
<td>Wash Buffer iW2</td>
<td>8.4 ml</td>
<td>4°C</td>
</tr>
<tr>
<td>Wash Buffer iW3</td>
<td>8.4 ml</td>
<td>4°C</td>
</tr>
<tr>
<td>Wash Buffer iW4</td>
<td>8.4 ml</td>
<td>4°C</td>
</tr>
<tr>
<td>ChIP-seq grade water</td>
<td>26.6 ml</td>
<td>4°C</td>
</tr>
<tr>
<td>Fixation Buffer</td>
<td>8 ml</td>
<td>4°C</td>
</tr>
<tr>
<td>DNA isolation Buffer (DIB)</td>
<td>3.2 ml</td>
<td>4°C</td>
</tr>
<tr>
<td>5x ChIP Buffer iC1b</td>
<td>6.9 ml</td>
<td>4°C</td>
</tr>
<tr>
<td>Lysis Buffer iL1b</td>
<td>100 ml</td>
<td>4°C</td>
</tr>
<tr>
<td>Lysis Buffer iL2</td>
<td>60 ml</td>
<td>4°C</td>
</tr>
<tr>
<td>Elution Buffer iE1</td>
<td>220 µl</td>
<td>4°C</td>
</tr>
<tr>
<td>Elution Buffer iE2</td>
<td>20 µl</td>
<td>4°C</td>
</tr>
</tbody>
</table>
Required materials not provided

Materials and Reagents

- Gloves to wear during all steps
- RNase/DNase-free 1.5 ml tubes
- Formaldehyde, 37%, molecular grade
- Phosphate buffered saline (PBS)
- qPCR SYBR® Green Mastermix
- ChIP-grade antibodies – www.diagenode.com
- ChIP-grade primers - www.diagenode.com
- Cell culture scraper (for adherent cells)
- Reagents for DNA purification, required for chromatin shearing assessment (eg. IPure kit v.2, Diagenode, Cat. No. C03010014 or MicroChIP DiaPure columns, Diagenode Cat. No. C03040001)

Additional supplies for tissue protocol:

- Protease inhibitor cocktail (Diagenode, Cat. No. C12010011 or C12010012) (100 µl per chromatin preparation)
- Scalpel blades
- Petri dishes

Equipment

- DiaMag 1.5 magnetic rack (Diagenode, Cat. No. B04000003)
- Bioruptor® sonication device and the associated microtubes:
 - Bioruptor® Plus (Diagenode, Cat. No. B01020001) and 1.5 ml TPX Microtubes (Cat. No. C30010010) or
 - Bioruptor® Pico (Diagenode, Cat. No. B01060001) and 1.5 ml Bioruptor® Microtubes with Caps (Cat. No. C30010016)
- Refrigerated centrifuge for 1.5 ml, 15 ml and 50 ml tubes
- DiaMag Rotator (Rotating wheel) (Diagenode, Cat. No. B05000001)
- Vortex
- Thermomixer
- qPCR cycler
Optional supplies

- Chromatin Shearing Optimization kit - Low SDS (iDeal Kit for TFs) (Diagenode, Cat. No. C01020013)
- 1M Sodium butyrate (NaBu) (Diagenode, Cat. No. C12020010)
- ChIP Cross-link Gold (Diagenode, Cat. No. C01019027)
- RNase cocktail (e.g. Ambion, AM2286A), required for chromatin shearing assessment
- Fluorescence-based assay for DNA concentration measurement, e.g. Qubit dsDNA BR Assay Kit (Life Technologies #Q32853)
- Qubit® Fluorometer (ThermoFisher Scientific)
Remarks before starting

1. Cell number

The protocol describes the preparation of a batch of chromatin which is sufficient for 6 IP reactions, 1 input sample and 1 sample for chromatin shearing assessment. The starting number of cells per batch depends on the target to be studied: histone marks require less starting material than transcriptional factors. Depending on the target we recommend to work with the following amount of cells:

<table>
<thead>
<tr>
<th>Target</th>
<th>Cells/batch</th>
<th>Cells/IP</th>
<th>Number of IPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transcription factors</td>
<td>25,000,000</td>
<td>~ 4,000,000</td>
<td>6 IPs + 1 INPUT + 1 shearing assessment</td>
</tr>
<tr>
<td>Histones</td>
<td>7,000,000</td>
<td>1,000,000</td>
<td>6 IPs + 1 INPUT + 1 shearing assessment</td>
</tr>
</tbody>
</table>

Scale the amount of cells per batch accordingly to the experimental plan.

Please note that the described protocol uses a prompt direct fixation in the cell culture plate. Fixed and scraped cells can not be accurately counted. This means that for adherent cells you need to use an approximate estimation of cell number per plate. Alternatively, an additional parallel plate for counting can be prepared. Suspension cells can be counted before the fixation.

Depending on the abundance of the target, the specificity of the antibody, and the number of cells available, it may be possible to scale up and down the number of cells per IP and/or start with a smaller or a bigger batch of cells.

For using lower numbers of cells per IP, you can start with a recommended batch and follow the protocol up to the chromatin shearing step. Then simply dilute the sheared chromatin in Shearing Buffer iS1b before adding
it to the IP reaction. The final volume of diluted chromatin containing the desired amount of cells should be 250 µl per IP reaction.

If starting with an amount of cells different from the standard protocol or if you want to use a higher amount of cells per IP, first determine the number of cells that you will use per IP and the total number of IPs. Fix cells as described in the standard protocol. For cell collection and lysis, scale up or down the volume of iL1b and iL2 buffers using 1 ml of iL1b and 0.6 ml of iL2b per 1 million cells. Define the volume of Shearing Buffer iS1b taking into account that you will need:

- 250 µl of sheared chromatin (containing the desired amount of cells) per IP reaction
- 2.5 µl of sheared chromatin per input
- 50 µl of sheared chromatin for chromatin shearing assessment
- Add 5% excess of iS1b

Resuspend the cells in the required volume of Shearing Buffer iS1b and follow the standard protocol.

Please note that an increased or decreased cell concentration in the Shearing Buffer may impact the shearing efficiency and an additional optimization of the shearing conditions may be required.

Studying both – histones and transcription factors from the same batch, please, refer to our recommendation for TF. Then for histone marks simply dilute the sample(s) in Shearing Buffer iS1b to obtain 1.000.000 cells per IP.

The protocol is optimized for use of 250 µl of sheared chromatin in a total volume of ChIP reaction equal to 350 µl. It is crucial to keep these volumes constant for optimal results.

2. Tissue amount

The protocol describes the preparation of a batch of chromatin which is sufficient for 6 IP reactions, 1 input sample and 1 sample for chromatin shearing assessment. The starting amount of tissue per batch depends on a target to be studied: histone marks require less starting material
than transcriptional factors. Depending on the target we recommend to work with the following amount of cells:

<table>
<thead>
<tr>
<th>Target</th>
<th>Tissue/batch</th>
<th>Tissue/IP</th>
<th>Number of IPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transcription factors</td>
<td>200 mg</td>
<td>~30 mg</td>
<td>6 IPs + 1 INPUT + 1 shearing assessment</td>
</tr>
<tr>
<td>Histones</td>
<td>40 mg</td>
<td>~7 mg</td>
<td>6 IPs + 1 INPUT + 1 shearing assessment</td>
</tr>
</tbody>
</table>

Scale the amount of tissue per batch accordingly to the experimental plan.

Depending on the abundance of the target, the specificity of the antibody and the amount of tissue available, it may be possible to scale up and down the amount of tissue per IP and/or start with a smaller or a bigger batch of tissue.

For using lower amounts of tissue per IP, start with a recommended amount of tissue and follow the protocol up to the chromatin shearing. Then simply dilute the sheared chromatin in Shearing Buffer iS1b before adding it to the IP reaction. The final volume of diluted chromatin containing a desired amount of tissue should be 250 µl per IP reaction.

If starting with a tissue amount different from the standard protocol or if you want to use a higher amount of tissue per IP, first determine the amount of tissue that you will use per IP and the total number of IPs.

Fix the tissue as described in the standard protocol. Follow the standard protocol for tissue fixation, collection and lysis. Do not scale lysis buffers iL1b and iL2. Define the volume of Shearing Buffer iS1b taking into account that you will need:

- 250 µl of sheared chromatin (containing the desired amount of tissue) per IP reaction
- 2.5 µl of sheared chromatin per input
- 50 µl of sheared chromatin for chromatin shearing assessment
- Add 5% excess of iS1b
Resuspend the tissue in the required volume of Shearing Buffer iS1b and follow the standard protocol.

Please note that the increased cell concentration in the Shearing Buffer may impact the shearing efficiency and an additional optimization of the shearing conditions may be required.

When harvesting cross-linked chromatin from tissue samples, the yield of chromatin can vary significantly between tissue types. The amount of chromatin per IP for histone marks should be in the range 0.5-3 µg, while a higher amount (3-10 µg) is required for transcriptional factors. We recommend performing a pilot experiment to determine the optimal amount of tissue. Once determined, it should be kept constant between experiments.

The protocol is optimized for use of 250 µl of sheared chromatin in a total volume of ChIP reaction equal to 350 µl. It is crucial to keep these volumes constant for optimal results.

3. Fixation optimization

Formaldehyde is the most commonly used cross-linking reagent ideal for two molecules which interact directly. The fixation time can depend on your target of interest and might require an additional optimization. Generally, a shorter fixation is required for histone marks (8-10 min) than for transcriptional factors (10-20 min) using a standard formaldehyde single step fixation protocol. Please note that longer fixation times may lead to chromatin resistant to sonication.

However, for higher order and/or dynamic interactions, other cross-linkers should be considered for efficient protein-protein fixation, e.g. Diagenode ChIP Cross-link Gold, an innovative dual cross-linking ChIP fixation reagent (Diagenode, Cat. No. C01019027).

4. Shearing optimization

Chromatin shearing is one of the most critical steps in the ChIP procedure. Chromatin fragments between 100-600 bp are ideal for ChIP experiments. The optimal sonication time depends on many factors, like cell type, cell
density, sample volume, fixation time, etc. Hence it is important to optimize the sonication conditions for each new ChIP project. For optimization of the shearing conditions, we recommend using the Chromatin Shearing Optimization kit - Low SDS (iDeal Kit for TFs) (Cat. No. C01020013) which contains all buffers needed for chromatin preparation compatible with the iDeal ChIP-qPCR kit. The reagents included in this kit allow to prepare chromatin using optimized shearing settings; the kit does not contain sufficient reagents for optimization of chromatin shearing.

Choose the shortest sonication time resulting in an efficient chromatin shearing. Over-sonication may lead to a drop in ChIP efficiency.

5. Magnetic beads

This kit includes DiaMag Protein A-coated magnetic beads. Make sure the beads do not dry out during the procedure as this will result in reduced performance. Keep the beads homogenously in suspension at all times when pipetting. Variation in the amount of beads will decrease reproducibility. Do not freeze the beads.

DiaMag Protein A-coated magnetic beads are suitable for immunoprecipitation of rabbit, guinea pig, dog and pig polyclonal and monoclonal Abs, mouse IgG2a, IgG2b and IgA and human IgG1, IgG2 and IgG4.
6. ChIP-grade antibodies

The quality of antibodies used in ChIP is essential for success. It is recommended to use only validated antibodies, specifically recognizing the target. Diagenode offers extensively validated and high-performance antibodies, confirmed for their specificity in ChIP/ChIP-seq. Each batch is validated, and batch-specific data are available on the website www.diagenode.com

7. Input

The input sample corresponds to complete genomic DNA which went through the full ChIP procedure without immunoselection. The input sample is used as a reference to calculate the recovery at the end of the ChIP procedure. We recommend including one input for each ChIP experiment.

8. Negative control

The kit contains a negative IgG antibody. We recommend including one negative IgG control in each series of ChIP reactions.

9. Quantitative PCR analysis

We recommend analysing the input and immunoprecipitated samples by SYBR® Green qPCR using at least 1 positive and 1 negative control region to determine the enrichment. Each specific antibody will require specific control primers designed by the user. For each primer pair, run the input DNA alongside the immunoprecipitated samples. PCR reactions should be performed at least in duplicate although performing in triplicate is recommended to be able to identify potential outliers.
STEP 1 - Cell collection and DNA-protein cross-linking from cultured cells
STEP 2 - Cell lysis and chromatin shearing from cells
STEP 1 - Tissue disaggregation and DNA-protein cross-linking
STEP 2 - Cell lysis and chromatin shearing derived from tissue samples
STEP 3 - Magnetic immunoprecipitation
STEP 4 - DNA isolation and decross-linking
STEP 5 - Quantitative PCR analysis
Protocol

The iDeal ChIP-qPCR kit is suitable for chromatin preparation and immunoprecipitation from cells and tissues for histones and transcriptional factors. The protocol for Step 1 “DNA-protein cross-linking” and Step 2 “Cell lysis and chromatin shearing” differs for cells and tissues. Please refer to the corresponding section. Starting from Step 3 “Magnetic immunoprecipitation”, the protocol is identical for both sample types.

The protocol describes the preparation of a batch of chromatin which is sufficient for 6 IP reactions, 1 input sample and 1 sample for chromatin shearing assessment. The exact amount of starting material depends on the target protein. In the below tables we recommend the amount of cells or tissue per batch and per IP for histones and non-histone proteins. Scale the amount of cells/tissue per batch accordingly to the experimental plan.

Table 2. Recommendations for cells

<table>
<thead>
<tr>
<th>Target</th>
<th>Cells/batch</th>
<th>Cells/IP</th>
<th>Number of IPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transcription factors</td>
<td>25.000.000</td>
<td>~ 4.000.000</td>
<td>6 IPs + 1 INPUT + 1 shearing assessment</td>
</tr>
<tr>
<td>Histones</td>
<td>7.000.000</td>
<td>1.000.000</td>
<td>6 IPs + 1 INPUT + 1 shearing assessment</td>
</tr>
</tbody>
</table>

Table 3. Recommendations for tissues

<table>
<thead>
<tr>
<th>Target</th>
<th>Tissue/batch</th>
<th>Tissue/IP</th>
<th>Number of IPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transcription factors</td>
<td>200 mg</td>
<td>~30 mg</td>
<td>6 IPs + 1 INPUT + 1 shearing assessment</td>
</tr>
<tr>
<td>Histones</td>
<td>40 mg</td>
<td>~7 mg</td>
<td>6 IPs + 1 INPUT + 1 shearing assessment</td>
</tr>
</tbody>
</table>
STEP 1

Cell collection and DNA-protein cross-linking from cultured cells

FOR CULTURED CELLS

1.1. Equilibrate the Fixation Buffer to room temperature before use.

1.2. Prepare the cross-linking solution in a fume hood by adding formaldehyde to the Fixation Buffer to a final concentration of 11% (e.g. add 0.6 ml of 37% formaldehyde to 1.4 ml of Fixation Buffer). Add the diluted formaldehyde directly to the cell culture medium in a proportion of 1:10. For a 20 ml cell culture you will need 2 ml of cross-linking solution.

1.3. Incubate the cells for 10 minutes at room temperature with gentle shaking.

NOTE: The fixation time might require an additional optimization. Please refer to the “Remarks before starting”.

1.4. Add Glycine to the cell culture medium in a proportion of 1:10 to stop the fixation (e.g. add 2.2 ml of glycine when you started with a 20 ml cell culture volume). Incubate for 5 minutes at room temperature with gentle shaking. Proceed to the next step immediately.

NOTE: We strongly recommend using freshly fixed cells for preparation of sheared chromatin prior to ChIP. If not possible, the fixed cells can be stored at -80°C for up to 4 months. To freeze the cells, remove the medium, wash the cells once with 20 ml of PBS. Add another 5 ml of PBS, collect the cells by scrapping and/or centrifugation at 500 x g for 5 minutes and 4°C and discard the supernatant. Store the cell pellet at -80°C.
STEP 2

Cell lysis and chromatin shearing from cells

1 Day 1 1 to 2 hours

FOR CULTURED CELLS

For adherent cells:

2.1. Remove the medium and wash the cells once with 20 ml of PBS. Discard the PBS. Keep everything at 4°C or on ice from now on.

2.2. Add 5 ml of cold Lysis buffer iL1b to the plate. Collect the cells by scraping and transfer them into a 50 ml tube.

2.3. Rinse the flask with the amount of Lysis Buffer iL1b recommended in the below table and add this to the 50 ml tube.

<table>
<thead>
<tr>
<th>TF (25.000.000 cells)</th>
<th>20 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histones (7.000.000 cells)</td>
<td>2 ml</td>
</tr>
</tbody>
</table>

(For up or down scaling use 1 ml of buffer iL1b per million of cells)

Proceed immediately with step 2.4.

For suspension cells:

2.1. Transfer cells into a 50 ml tube. Pellet the cells by centrifugation at 500 x g and 4°C for 5 minutes. Discard the cell culture medium.
2.2. Resuspend the cells in 20 ml of ice-cold PBS, centrifuge at 500 x g and 4°C for 5 minutes and gently discard the supernatant. Keep everything at 4°C or on ice from now on.

2.3. Resuspend the cells in 1 ml of ice-cold Lysis Buffer iL1b by pipetting up and down several times. Add the amount of buffer iL1b from the table below:

<table>
<thead>
<tr>
<th>Buffer iL1b</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TF (25,000,000 cells)</td>
<td>24 ml</td>
</tr>
<tr>
<td>Histones (7,000,000 cells)</td>
<td>6 ml</td>
</tr>
</tbody>
</table>

(For up or down scaling use 1 ml of iL1b per 1 million cells)

Proceed immediately with step 2.4.

2.4. Incubate at 4°C for 20 minutes with gentle mixing on a DiaMag Rotator. Pellet the cells by centrifugation at 500 x g and 4°C for 5 minutes and discard the supernatant.

2.5. Resuspend the cell pellet in 1 ml of ice-cold Lysis Buffer iL2 by pipetting up and down several times. Add the amount of buffer iL2 from the below table:

<table>
<thead>
<tr>
<th>Buffer iL2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TF (25,000,000 cells)</td>
<td>14 ml</td>
</tr>
<tr>
<td>Histones (7,000,000 cells)</td>
<td>3.2 ml</td>
</tr>
</tbody>
</table>

(For up or down scaling, use 600 µl of buffer iL2 per 1 million of cells)

2.6. Incubate for 10 minutes at 4°C with gentle mixing on a DiaMag Rotator. Pellet the cells again by centrifugation for 5 minutes at 500 x g and 4°C and discard the supernatant.

2.7. Add 8.4 µl of 200x protease inhibitor cocktail to 1.67 ml of Shearing Buffer iS1b. Keep on ice.

2.8. Add the complete Shearing Buffer iS1b to the cell pellet. The cell concentration in the Shearing Buffer should be as following:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TF</td>
<td>1.5 million cells per 100 µl iS1b</td>
</tr>
<tr>
<td>Histones</td>
<td>420,000 cells per 100 µl iS1b</td>
</tr>
</tbody>
</table>
2.9. Resuspend the cells by pipetting up and down several times and incubate on ice for 10 minutes. Split the cell suspension into aliquots of maximum 300 µl by transferring it to the appropriate sonication microtubes:

- When using the Bioruptor® Plus use 1.5 ml TPX Microtubes (Cat. No. C30010010)
- When using the Bioruptor® Pico use 1.5 ml Bioruptor® Microtubes with Caps (Cat. No. C30010016)

NOTE: The maximum volume for shearing with the Bioruptor® is 300 µl per 1.5 ml Microtube. The use of correct type of microtubes is essential for the efficiency of sonication.

2.10. Shear the chromatin by sonication using the Bioruptor®. Choose the protocol which is adapted to your device:

- When using the Bioruptor® Standard or Plus, shear for 10 to 30 cycles [30 seconds “ON”, 30 seconds “OFF”] each at High power setting.
- When using the Bioruptor® Pico shear for 5 to 12 cycles [30 seconds “ON”, 30 seconds “OFF”].

NOTE: We recommend performing pilot experiments for each new sample type using the Chromatin Shearing Optimization kit - Low SDS (iDeal Kit for TFs) (Cat. No. C01020013).

2.11. Briefly spin down the liquid in the samples for 15 seconds. Transfer samples to new 1.5 ml tubes and centrifuge at 16,000 x g and 4°C for 10 minutes. Pool the supernatants which contain the sheared chromatin.

2.12. Take an aliquot of 50 µl of the sheared chromatin for shearing assessment as described in a separate section “Protocol for chromatin shearing analysis”.

NOTE: We recommend analysing the shearing for each batch of chromatin. This step can be omitted when optimal sonication settings for given experimental conditions (cell type, cell number and fixation) have been established previously.

2.13. Use the chromatin for immunoprecipitation (Step 3 Magnetic immunoprecipitation) or store it at -80°C for up to 2 months.
STEP 1

Tissue disaggregation and DNA-protein cross-linking

FOR TISSUES

1.1. Equilibrate the Fixation Buffer to room temperature before use.

1.2. Prepare the cross-linking solution in a fume hood by adding 54 µl of 37% formaldehyde to 2 ml of Fixation Buffer to a final concentration of 1%. Use 2 ml of Fixation Buffer for one chromatin preparation.

1.3. Put the required amount of fresh or frozen tissue (up to 200 mg) in a petri dish on ice. Keep samples on ice at all times and minimize the time of manipulation to prevent sample degradation.

1.4. Chop the tissue into small pieces (between 1-3 mm³) using a scalpel blade and transfer it into a Dounce homogenizer. Add 1 ml of formaldehyde diluted in Fixation Buffer.

1.5. Immediately disaggregate the tissue using a Dounce homogenizer (loose fitting pestle) to get a homogeneous suspension. Set the timer for a total fixation time of 10 minutes. Start deducting the fixation time from this point.

 NOTE: The fixation time might require an additional optimization. Please refer to the “Remarks before starting”.

1.6. Transfer the tissue suspension into a 15 ml tube. Rinse the Dounce
homogenizer with an additional 1 ml of diluted formaldehyde and pool with the sample in the same 15 ml tube.

1.7. Incubate for a total fixation time of 10 minutes (starting at step 1.5) at room temperature with gentle rotation on a DiaMag Rotator.

1.8. Add 200 µl of Glycine to the tissue suspension to stop the fixation. Incubate for 5 minutes at room temperature with gentle mixing on a DiaMag Rotator. Proceed to the next step immediately.

NOTE: We strongly recommend using freshly fixed tissue for preparation of sheared chromatin prior to ChIP. If not possible, the fixed tissue can be stored at -80°C for up to 4 months. To freeze the tissue, remove the medium and wash the tissue once with 2 ml of PBS. Store the tissue pellet at -80°C.
STEP 2

Cell lysis and chromatin shearing derived from tissue samples

FOR TISSUES

NOTE: An additional 100 µl of protease inhibitors cocktail is required per chromatin preparation – available separately from Diagenode

2.1. Centrifuge samples at 850 x g for 5 minutes at 4°C. Gently discard the supernatant and keep the pellet.

2.2. Wash the pellet with 10 ml of ice-cold PBS and centrifuge samples at 850 x g for 5 minutes at 4°C. Gently discard the supernatant. Keep everything at 4°C or on ice from now on.

2.3. Add 50 µl of 200x protease inhibitor cocktail to 10 ml of ice-cold Lysis Buffer iL1b.

2.4. Add 1 ml of ice-cold complete Lysis Buffer iL1b to the pellet and resuspend by pipetting up and down several times. Add the remaining amount of complete Buffer iL1b.

2.5. Incubate at 4°C for 20 minutes with gentle mixing on a DiaMag Rotator.

2.6. Pellet the cells by centrifugation at 850 x g for 5 minutes at 4°C and discard the supernatant.
2.7. Add 50 µl of 200x protease inhibitor cocktail to 10 ml of ice-cold Lysis Buffer iL2. Add 1 ml of ice-cold complete Lysis Buffer iL2 to the cell pellet and resuspend the cells by pipetting up and down several times. Add the remaining amount of complete Buffer iL2.

2.8. Incubate at 4°C with gentle mixing on a DiaMag Rotator for 10 minutes.

2.9. Pellet the cells again by centrifugation at 850 x g for 5 minutes at 4°C and discard supernatant.

2.10. Add 8.4 µl of 200x protease inhibitor cocktail to 1.67 ml of Shearing Buffer iS1b. Keep on ice.

2.11. Add the complete Shearing Buffer iS1b to the pellet. Resuspend the cells by pipetting up and down several times and homogenize using a bounce homogenizer (tight pestle). Incubate for 10 minutes on ice.

2.12. Split the cell suspension into aliquots of maximum 300 µl by transferring it to the appropriate 1.5 ml microtubes:

 a. When using the Bioruptor® Plus use 1.5 ml TPX Microtubes (Cat. No. C30010010)

 b. When using the Bioruptor® Pico use 1.5 ml Bioruptor® Microtubes with Caps (Cat. No. C30010016)

 NOTE: The maximum volume for shearing with the Bioruptor® is 300 µl per 1.5 ml Microtube. The use of correct type of microtubes is essential for the efficiency of sonication.

2.13. Shear the chromatin by sonication using the Bioruptor®. Choose the protocol which is adapted to your device:

 • When using the Bioruptor® Standard or Plus, shear for 10 to 30 cycles [30 seconds “ON”, 30 seconds “OFF”] each at High power setting.

 • When using the Bioruptor® Pico shear for 5 to 12 cycles [30 seconds “ON”, 30 seconds “OFF”].

 NOTE: We recommend performing pilot experiments for each new sample type using the Chromatin Shearing Optimization kit - Low SDS (iDeal Kit for TFs) (Cat. No. C01920013).
2.14. Briefly spin down the liquid in the samples for 15 seconds. Transfer samples to new 1.5 ml tubes and centrifuge at 16,000 x g at 4°C for 10 minutes. Pool the supernatants which contain the sheared chromatin.

2.15. (Optional) DNA concentration in the supernatant can be quantified at this step. We recommend using fluorometric quantitation (eg. Qubit assay, ThermoFischer Scientific).

2.16. Take an aliquot of 50 µl of sheared chromatin for the shearing assessment. The protocol for chromatin shearing analysis is described in a separate section “Protocol for chromatin shearing analysis”.

 NOTE: We recommend analysing the shearing for each batch of chromatin. This step can be omitted when optimal sonication settings for given experimental conditions (cell type, cell number and fixation) have been optimised previously.

2.17. Use the chromatin in immunoprecipitation (Step 3 Magnetic immunoprecipitation) or store it at -80°C for up to 2 months.
STEP 3

Magnetic immunoprecipitation

1-2 Day 1-2 ❌ Overnight

FOR CELLS AND TISSUES

3.1. Determine the amount of IP reactions to perform including the negative control IP (IgG). Take 30 µl of DiaMag Protein A-coated magnetic beads per IP and transfer it to a clean 1.5 ml tube.

3.2. Prepare 4 ml of 1x ChIP Buffer iC1b by mixing the following reagents:
 - 3.2 ml ChIP-seq grade water
 - 0.8 ml 5x ChIP Buffer iC1b
 - 80 µl of 5% BSA
 Keep the diluted ChIP Buffer iC1b on ice.

 NOTE: 4 ml of 1x ChIP Buffer iC1b is enough to wash the beads for up to 6 IPs

3.3. Wash the beads 3 times with 1 ml of ice-cold 1x ChIP Buffer iC1b. To wash the beads, add 1 ml of 1x ChIP Buffer iC1b directly to the beads suspension, resuspend the beads by pipetting up and down several times and incubate at 4°C with gentle shaking for 5 minutes. Spin the tubes and place them in the 1.5 ml Diagenode magnetic rack (DiaMag1.5). Wait for one minute to allow the beads to be captured by the magnet and remove the supernatant. Repeat this 2 times.

3.4. After the last wash, resuspend the beads in 1x ChIP Buffer iC1b by adding the original volume of beads (30 µl per IP).

3.5. Take the required number of 1.5 ml tubes (one tube per IP) and add
30 µl of the washed beads to each tube.

3.6. Prepare the ChIP reaction mix for 1 IP as described below. Scale according to the number of IPs including a small excess (0.5 extra reaction).

NOTE: Prepare separate reaction mixes if you use different antibodies or different amounts of antibody

- 6 µl of BSA
- 1.8 µl 200x protease inhibitor cocktail
- 20 µl 5x iC1b Buffer
- (42.2 µl – x µl) water
- Add x µl of ChIP-grade antibody

The total volume of the ChIP reaction mix per IP is 70 µl

NOTE: The required amount of antibody per IP may vary. Check the supplier’s recommendation or perform a titration curve using different amounts of antibody. Use 1 µg of IgG (negative control antibody) for the negative control IP. If required, NaBu (20 mM final concentration) or other inhibitors can be added.

3.7. Add 70 µl of ChIP reaction mix to the individual tubes containing 30 µl of washed Protein A-coated magnetic beads. Incubate the tubes for 2-4 hours at 4°C under constant rotation on the DiaMag Rotator.

3.8. Briefly spin the tubes containing the ChIP reaction mix and add 250 µl of sheared chromatin. Keep aside 2.5 µl of the sheared chromatin at 4°C to be used as an INPUT starting from step 4.3. Incubate the tubes overnight at 4°C under constant rotation on the DiaMag Rotator.

3.9. Perform the washes as follows: briefly spin the tubes and place them in the DiaMag1.5. Wait for 1 minute and remove the supernatant. Add 350 µl of Wash Buffer iW1: gently shake the tubes to resuspend the beads and incubate for 5 minutes on the DiaMag Rotator at 4°C.

3.10. Repeat the washing step as described above once with Wash Buffer iW2, iW3 and iW4, respectively.
STEP 4
DNA isolation and decross-linking

FOR CELLS AND TISSUES

4.1. Prepare complete DIB Buffer by adding 1 µl of Proteinase K to 100 µl of DIB Buffer. Scale according to the number of samples including the input sample (you will need 100 µl per IP sample and 97.5 µl for the input).

4.2. Briefly spin the tubes containing the IP samples and place them in the DiaMag1.5. Wait for 1 minute and remove the supernatant.

4.3. Briefly centrifuge the input sample and treat it in parallel with the IP samples from this point onwards.

4.4. Remove the tubes from the Magnetic Rack and add 100 µl of complete DIB to the IP samples. Resuspend the beads by pipetting up and down a few times. Add 97.5 µl complete DIB to the input sample.

4.5. Incubate at 55°C for 15 minutes followed by 15 minutes at 100°C.

4.6. Briefly spin down the tubes to bring down the liquid caught in the lid.

4.7. Place the tubes in the DiaMag1.5 and wait for 1 minute.

4.8. Transfer the supernatant which contains the DNA to new labeled
tubes. Determine the total number of regions to be analyzed by qPCR for each sample and take the required volume for qPCR analysis.

NOTE: Depending on a sensitivity of a Master Mix and qPCR cycler used, the samples can be diluted before PCR and the volume per PCR may vary.

4.9. Store the remaining DNA at -20°C until further use.
STEP 5
Quantitative PCR analysis

FOR CELLS AND TISSUES

NOTE: For each primer pair, run the INPUT DNA alongside the immuno- precipitated samples and negative IgG control.

5.1. Take an aliquot of immunoprecipitated DNA and a corresponding INPUT (step 4.8).

5.2. Prepare the qPCR mix as follows (20 µl reaction volume using the user supplied primer pairs):
 - 10 µl of a 2x SYBR® Green qPCR master mix
 - 1 µl of primer pair
 - 4 µl of PCR-grade water
 - 5 µl of IP’d or INPUT DNA

5.3. Use the following PCR program:

 NOTE: These conditions may require optimization depending on the type of Master Mix, qPCR system used and user provided primer pair.

<table>
<thead>
<tr>
<th>Step</th>
<th>Time/cycles</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Denaturation</td>
<td>3-10 min*</td>
<td>95°C</td>
</tr>
<tr>
<td>2. Amplification</td>
<td>30 seconds</td>
<td>95°C</td>
</tr>
<tr>
<td>3. Melting curve**</td>
<td>40 cycles</td>
<td>Follow qPCR instrument manufacturer recommendations</td>
</tr>
</tbody>
</table>

* Please check carefully supplier’s recommendations about Taq polymerase activation time
** Include and inspect the melting curves based on the protocols recommended by the qPCR instrument manufacturer to ensure that primer pairs amplify only a single specific product.

5.4. Record the threshold cycles (Ct values) from the exponential phase of the qPCR for the IP’d DNA sample and input for each primer pair.

5.5. Calculate the relative amount of immunoprecipitated DNA compared to INPUT DNA for the control regions (% of recovery) using the following formula:

\[
\% \text{ recovery} = 2^{[(Ct_{\text{input}} - 6.64) - Ct_{\text{sample}}]} \times 100\%
\]

- \(Ct_{\text{sample}}\) and \(Ct_{\text{input}}\) are the threshold cycles from the exponential phase of the qPCR for the IP’d DNA sample and INPUT, respectively.
- 2 is the amplification efficiency.
- 6.64 is a compensatory factor to correct the input dilution.

NOTE: This equation assumes that the PCR is 100% efficient (amplification efficiency = 2). For accurate results, the amplification efficiency with given primer pair has to be close to 100% meaning that for each cycle the amount of product is doubles \((E=2)\). The real amplification efficiency, if known, should be used. The formula takes into account that 1% of INPUT was used as suggested in the protocol (2.5 \(\mu\)l INPUT vs 250 \(\mu\)l of chromatin per IP). If the amount of INPUT used is different from 1%, an introduction of a compensatory factor in the formula is required to correct the input dilution \(x\) as follows:

\[
\% \text{recovery} = 2^{[(Ct_{\text{input}} - \log_2(x) - Ct_{\text{sample}})]} \times 100\%
\]

Where: \(\log_2(x)\) accounts for the INPUT dilution

Example: If you use an INPUT of 5 \(\mu\)l from 250 \(\mu\)l of chromatin used per IP, it corresponds to 50 \(X\) dilution. The compensatory factor is equal to \(\log_2(50)=5.64\) and the formula to calculate the recovery will be as follows:

\[
\% \text{recovery} = 2^{[(Ct_{\text{input}} - 5.64 Ct_{\text{sample}})]} \times 100\%.
\]

Please, do not hesitate to contact our customer support team if you have any questions about the design of your ChIP experiment.

Contact for Europe, Asia, Oceania and Africa: custsupport@diagenode.com

Contact for North and South America: custsupport.na@diagenode.com
Example of results

Figure 1. Successful chromatin shearing using the Bioruptor® Pico and the iDeal ChIP-qPCR kit.

HeLa cells were fixed with formaldehyde and chromatin was prepared according to the iDeal ChIP-qPCR protocol. Samples were sonicated for 8 cycles of 30” ON/30” OFF using the Bioruptor® Pico. A 100 bp ladder was loaded as size standard. Panel A: Fragment size assessment by an agarose gel electrophoresis. Panel B: Fragment size assessment using a Fragment Analyzer (Advanced Analytical).
Figure 2. Chromatin immunoprecipitation analysis using H3K4me4 (A) and CTCF antibodies (B)

ChIP was performed on human HeLa cells using the H3K4me4 (Cat. No. C15410003) and CTCF (Cat. No. C15410210) antibodies. IgG was used as a negative control. The IP’d DNA was analyzed by qPCR with the following primer sets: EIF4A2, used as a positive control, and THS2B and Myoglobin exon 2, used as negative controls for H3K4me3. H19 imprinting control region and GAPDH intron 8, used as positive controls, and Myoglobin exon 2, used as a negative control for CTCF.

The figure shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis).
Protocol for chromatin shearing analysis

General remarks

We recommend using an agarose gel analysis or the Fragment Analyzer (Advanced Analytical) for the size assessment.

For accurate size determination of the chromatin fragments, reverse crosslinking, including RNase treatment followed by DNA purification, is advised. Size estimation of chromatin fragments without reverse cross-linking is not precise. The presence of the crosslinks retards electrophoretic migration resulting in a misinterpretation of fragment size. RNase treatment significantly reduces background caused by degraded RNA and improves visual assessment of shearing.

Workflow for analysis of sheared chromatin:

- RNAse treatment (1h, optional but highly recommended for an accurate size assessment)
- Reverse cross-linking (4h or overnight)
- DNA purification using a method of choice (eg.: IPure beads (v.2), DiaPure columns or phenol-chloroform extraction). Reagents are not provided in the kit
- Fragment size assessment (agarose gel or Fragment Analyzer) (1 h)

RNAse treatment

NOTE: RNase cocktail (e.g. Ambion, AM2286A) is not supplied with iDeal ChIP-qPCR kit.

1. Take 50 µl of sheared chromatin (step 2.12 for cells or step 2.16 for tissues in the protocol) and transfer to a 1.5 ml microtube.

2. Dilute 1 µl of RNase cocktail (e.g. Ambion, AM2286A) in 150 µl of ChIP grade water.
3. Add 2 µl of diluted RNase cocktail to the aliquot of sheared chromatin.

4. Incubate for 1 hour at 37°C.

Reverse cross-linking

5. Add 50 µl of Elution Buffer iE1.

6. Add 4 µl of Elution Buffer iE2, mix thoroughly.

7. Incubate samples at 65°C for 4 hours (or overnight).

DNA purification

Purify DNA using a method of choice (eg. IPure kit v.2, DiaPure columns or phenol-chloroform extraction) and analyze the purified DNA on a 1.5% agarose gel. Load around 300 ng of DNA for an optimal separation and visualization. Alternatively, you can use a Fragment Analyzer (Advanced Analytical, Standard Sensitivity NGS Fragment Analysis Kit [DNF-473]).
FAQs

What is the amount of DNA I can precipitate after IP?
The amount of DNA you precipitate largely depends on the antibody and cell type used. In general antibodies against histone modification precipitate larger amounts of DNA than antibodies against other targets. With the CTCF antibody the amount is ~20 ng from 4 million HeLa cells. A typical yield for a transcription factor will be in the range of 1-5 ng.

How much antibody is needed per IP?
The amount of antibody needed depends on different factors of which the antibody itself is the most important. Most of Diagenode ChIP-grade antibodies have been tested at different concentrations to determine the optimal amount and the suggested amount of antibody is given in the data sheet. Please note, however, that this can be assay dependent and might need to be optimized for each experimental setting. If the antibodies come from other companies, please refer to the corresponding technical data sheet. If no required amount of antibody is given, we suggest performing a titration experiment. It is important to select the amount of antibody which gives the lowest background signal.

What is the binding capacity of DiaMag Protein A-coated magnetic beads?
30 µl of DiaMag Protein A-coated magnetic beads can bind up to 10 µg of antibody.

What is the specificity of protein A-coated magnetic beads?
DiaMag Protein A-coated magnetic beads included in the iDeal ChIP-qPCR allow an efficient capture of rabbit, guinea pig, dog and pig polyclonal and monoclonal Abs, mouse IgG2a, IgG2b and IgA and human IgG1, IgG2 and IgG4. If the antibody of interest belongs to a different class of immunoglobulins (mouse IgG1 and IgG3, rat or goat polyclonal Abs, and human IgG3), DiaMag Protein G-coated magnetic beads should be used instead of protein A coated beads. These beads are available separately (C03010021).
Can I use a monoclonal antibody in ChIP experiment?

ChIP can be performed using either monoclonal or polyclonal antibodies. In general, polyclonal antibody populations will recognize a number of different epitopes, in contrast to monoclonal antibodies, which recognize a single epitope. Because monoclonals recognize a single epitope on a target protein, they often provide a high level of specificity, low non-specific binding, and low background signals. The major disadvantage of a monoclonal antibody is its recognition of only one epitope, which can be masked by cross-linking, decreasing the efficiency of immunoprecipitation.

Why do I observe a different DNA size on agarose gel and Bioanalyzer for sheared chromatin?

We recommend using agarose gel or Fragment analyzer (Advanced Analytical) for an accurate size assessment of sheared chromatin.

Although Agilent BioAnalyzer 2100 is widely used for size assessment of DNA fragments before library preparation for NGS, this technology is less optimal for analysis of sheared chromatin. For example, some inconsistencies between agarose gel and BioAnalyzer 2100 profiles have been documented. It may be linked to a higher sensitivity of microfluidics chips to residual contaminants (ions, SDS, proteins, carrier used for DNA precipitation, etc.), overloading and to conformation/spacial structure of DNA molecules which might be affected by fixation and not fully relieved by de-crosslinking.

Moreover, BioAnalyzer 2100 traces are log-based, so a large distribution of higher molecular weight fragments are compacted into a much smaller area of the trace as compared to the smaller size fragments leading to a visual misinterpretation of fragment distribution.

Another key point is about quantitation of BioAnalyzer 2100 peaks. If each region is calculated using molarity which represent number of molecules in a particular range, a significantly higher level of molecules are found in low molecular weight region (fig. below).
Figure 3. Size assessment of sheared chromatin using an agarose gel and the BioAnalyzer.

HeLa cells were fixed with formaldehyde and chromatin was prepared according to Diagenode’s protocol. Samples were sonicated for 10 cycles of 30” ON/30” OFF with the Bioruptor® Pico using 1.5 ml Bioruptor® microtubes with caps (C30010016) and analyzed by agarose gel (panel A) or by BioAnalyzer, High sens Agilent DNA kit (panel B). Fragment content below and above 500 bp was calculated as percentage of total surface (panel C). Panel D shows fragment content calculated as molarity (BioAnalyzer trace only).

What is the composition of buffers included in the kit?

The composition of the buffers is proprietary.
Related products

<table>
<thead>
<tr>
<th>Product</th>
<th>Cat. No.</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChIP Cross-link Gold</td>
<td>C01019027</td>
<td>600 µl</td>
</tr>
<tr>
<td>Chromatin shearing optimization kit – Low SDS (iDeal Kit for TFs)</td>
<td>C01020013</td>
<td>100 million cells</td>
</tr>
<tr>
<td>iDeal ChIP-seq kit for Transcription Factors</td>
<td>C01010054</td>
<td>10 rxns</td>
</tr>
<tr>
<td>iDeal ChIP-seq kit for Transcription Factors</td>
<td>C01010055</td>
<td>24 rxns</td>
</tr>
<tr>
<td>iDeal ChIP-seq kit for Transcription Factors</td>
<td>C01010170</td>
<td>100 rxns</td>
</tr>
<tr>
<td>iDeal ChIP-seq kit for Histones</td>
<td>C01010050</td>
<td>10 rxns</td>
</tr>
<tr>
<td>iDeal ChIP-seq kit for Histones</td>
<td>C01010051</td>
<td>24 rxns</td>
</tr>
<tr>
<td>iDeal ChIP-seq kit for Histonesh</td>
<td>C01010059</td>
<td>100 rxns</td>
</tr>
<tr>
<td>MicroChIP DiaPure columns</td>
<td>C03040001</td>
<td>50 rxns</td>
</tr>
<tr>
<td>IPure kit v2</td>
<td>C03010014</td>
<td>24 rxns</td>
</tr>
<tr>
<td>IPure kit v2</td>
<td>C03010015</td>
<td>100 rxns</td>
</tr>
<tr>
<td>Bioruptor Pico®</td>
<td>B01060001</td>
<td></td>
</tr>
</tbody>
</table>

Validated antibodies – check out the complete list at www.diagenode.com

<table>
<thead>
<tr>
<th>ChIP-grade antibody</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AML1-ETO polyclonal antibody</td>
<td>C15310197</td>
</tr>
<tr>
<td>Pol II mAb</td>
<td>C15200000</td>
</tr>
<tr>
<td>CTCF pAb</td>
<td>C15410210</td>
</tr>
<tr>
<td>TBP mAb</td>
<td>C15200002</td>
</tr>
<tr>
<td>ER alpha mAb</td>
<td>C15100066</td>
</tr>
<tr>
<td>ETO pAb</td>
<td>C15310001</td>
</tr>
<tr>
<td>FOXA1 pAb</td>
<td>C15410231</td>
</tr>
<tr>
<td>FOXM1 pAb</td>
<td>C15410232</td>
</tr>
<tr>
<td>GR mAb</td>
<td>C15200010</td>
</tr>
<tr>
<td>GTF2E2 pAb</td>
<td>C15410264</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ChIP-grade antibody</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H3K4me3 pAb</td>
<td>C15410003</td>
</tr>
<tr>
<td>H3K27me3 pAb</td>
<td>C15410069</td>
</tr>
<tr>
<td>H3pan mAb (clone 1B1B2)</td>
<td>C15200011</td>
</tr>
<tr>
<td>H3R8me2 asym pAb</td>
<td>C15410286</td>
</tr>
<tr>
<td>H3K27ac pAb</td>
<td>C15410196</td>
</tr>
<tr>
<td>H3K9me3 pAb</td>
<td>C15410193</td>
</tr>
<tr>
<td>H3K4me1 pAb</td>
<td>C15410194</td>
</tr>
<tr>
<td>H4K20me3 pAb</td>
<td>C15410207</td>
</tr>
<tr>
<td>H2A.Z pAb</td>
<td>C15410201</td>
</tr>
<tr>
<td>H4K5ac pAb</td>
<td>C15410025</td>
</tr>
</tbody>
</table>
For research use only.

Not intended for any animal or human therapeutic or diagnostic use.

© 2017 Diagenode SA. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in retrieval systems, or translated into any language or computer language, in any form or by any means: electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without prior written permission from Diagenode SA (hereinafter, “Diagenode”). The information in this guide is subject to change without notice. Diagenode and/or its affiliates reserve the right to change products and services at any time to incorporate the latest technological developments. Although this guide has been prepared with every precaution to ensure accuracy, Diagenode and/or its affiliates assume no liability for any errors or omissions, nor for any damages resulting from the application or use of this information. Diagenode welcomes customer input on corrections and suggestions for improvement.

Notice to purchaser limited license

The information provided herein is owned by Diagenode and/or its affiliates. Subject to the terms and conditions that govern your use of such products and information, Diagenode and/or its affiliates grant you a nonexclusive, nontransferable, non-sublicensable license to use such products and information only in accordance with the manuals and written instructions provided by Diagenode and/or its affiliates. You understand and agree that except as expressly set forth in the terms and conditions governing your use of such products, that no right or license to any patent or other intellectual property owned or licensable by Diagenode and/or its affiliates is conveyed or implied by providing these products. In particular, no right or license is conveyed or implied to use these products in combination with any product not provided or licensed to you by Diagenode and/or its affiliates for such use. Limited Use Label License: Research Use Only The purchase of this product conveys to the purchaser the limited, non-transferable right to use the product only to perform internal research for the sole benefit of the purchaser. Noright to resell this product or any of its components is conveyed expressly, by implication, or by estoppel. This product is for internal research purposes only and is not for use in commercial applications of any kind, including, without limitation, quality control and commercial services such as reporting the results of purchaser’s activities for a fee or other form of consideration. For information on obtaining additional rights, please contact info@diagenode.com.

Trademarks

The trademarks mentioned herein are the property of Diagenode or their respective owners. Bioanalyzer is a trademark of Agilent Technologies, Inc. Agencourt and AMPure® are registered trademarks of Beckman Coulter, Inc. Illumina® is a registered trademark of Illumina® Inc; Qubit is a registered trademark of Life Technologies Corporation.
www.diagenode.com