

iDeal Library Preparation kit (incl. Index Primer Set 1)

Cat. No. C05010020 (24 rxns)

The iDeal Library Preparation Kit has been validated on IP-Star Compact Automated System. Two versions of protocol (manual and automated) are described in this manual.

Please read this manual carefully before starting your experiment

Contents

Kit materials	4
Required materials not provided	6
Manual processing	7
Automated processing	16
Related products	28

Kit materials

The iDeal Library Preparation Kit contains all reagents necessary for the preparation of 24 libraries. The kit contains also the indexes allowing for multiplexing up to 12 samples. The set of additional 12 indexes is available separately (Index Primer Set 2 (iDeal Library Preparation Kit x24), Diagenode, Cat. No. C05010021) allowing for multiplexing up to 24 samples.

Description	Storage
iDeal Library End Repair/dA-Tailing Enzyme Mix (green)	-20°C
iDeal Library End Repair/dA-Tailing Buffer (green)	-20°C
iDeal Library Ligation Master Mix (red)	-20°C
iDeal Library Ligation Enhancer (red)	-20°C
iDeal Library PCR Master Mix (blue)	-20°C
iDeal Library Adaptor for Illumina (red)	-20°C
iDeal Library Uracil Excision Reagent (red)	-20°C
iDeal Library Universal PCR Primer for Illumina (blue)	-20°C

Table 1. Reagents supplied with the iDeal Library Preparation Kit.

Table 2. List of indexes supplied with the iDeal Library Preparation Kit.

Product	Index Primer Sequence	Expected index Primer Sequence Read	Quantity	Storage
iDeal Library Index 1 Primer for Illumina	5'-CAAGCAGAAGACGGCATACGAGAT <u>CGTGAT</u> GTGA CTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3'	ATCACG	10 µl	-20°C
iDeal Library Index 2 Primer for Illumina	5'-CAAGCAGAAGACGGCATACGAGAT <u>ACATCG</u> GTGA CTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3'	CGATGT	10 µl	-20°C
iDeal Library Index 3 Primer for Illumina	5´-CAAGCAGAAGACGGCATACGAGAT <u>GCCTAA</u> GTGA CTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´	TTAGGC	10 µl	-20°C
iDeal Library Index 4 Primer for Illumina	5´-CAAGCAGAAGACGGCATACGAGAT <u>TGGTCA</u> GTGA CTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´	TGACCA	10 µl	-20°C
iDeal Library Index 5 Primer for Illumina	5´-CAAGCAGAAGACGGCATACGAGAT <u>CACTGT</u> GTGA CTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´	ACAGTG	10 µl	-20°C
iDeal Library Index 6 Primer for Illumina	5'-CAAGCAGAAGACGGCATACGAGAT <u>ATTGGC</u> GTGA CTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3'	GCCAAT	10 µl	-20°C
iDeal Library Index 7 Primer for Illumina	5'-CAAGCAGAAGACGGCATACGAGAT <u>GATCTG</u> GTGA CTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3'	CAGATC	10 µl	-20°C
iDeal Library Index 8 Primer for Illumina	5'-CAAGCAGAAGACGGCATACGAGAT <u>TCAAGT</u> GTGA CTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3'	ACTTGA	10 µl	-20°C
iDeal Library Index 9 Primer for Illumina	5'-CAAGCAGAAGACGGCATACGAGAT <u>CTGATC</u> GTGA CTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3'	GATCAG	10 µl	-20°C
iDeal Library Index 10 Primer for Illumina	5'-CAAGCAGAAGACGGCATACGAGAT <u>AAGCTA</u> GTGA CTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3'	TAGCTT	10 µl	-20°C
iDeal Library Index 11 Primer for Illumina	5´-CAAGCAGAAGACGGCATACGAGATG TAGCCG TGAC TGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´	GGCTAC	10 µl	-20°C
iDeal Library Index 12 Primer for Illumina	5'-CAAGCAGAAGACGGCATACGAGAT <u>TACAAG</u> GTGA CTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3'	CTTGTA	10 µl	-20°C

Where -s- indicates phosphorothioate bond.

NOTE: If fewer than 12 indexes are used in a lane for sequencing, it is recommended to use the following indexes:

- Pool of 2 samples: Index #6 and 12
- Pool of 3 samples: Index #4, 6 and 12
- Pool of 6 samples: Index #2, 4, 5, 6, 7 and 12

Required materials not provided

- 100% Ethanol
- Nuclease-free Water
- 10 mM Tris-HCl, pH 8.0 or 0.1X TE
- DNA LoBind Tubes (Eppendorf #022431021)
- AMPure® XP Beads (Beckman Coulter, Inc. #A63881)
- Magnetic rack -DiaMag 0.2 ml (Diagenode, Cat. No. B04000001)
- PCR Machine
- Optional: Index Primer Set 2 (iDeal Library Preparation Kit x24) (Diagenode, Cat. No. C05010021)

<u>Table 3.</u> List of indexes included in the kit Index Primer Set 2 (iDeal Library Preparation Kit x24).

Product	Index Primer Sequence	Expected index Primer Sequence Read	Quantity	Storage
iDeal Library Index 13 Primer for Illumina	5´-CAAGCAGAAGACGGCATACGAGATTGTTGACTGTG ACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´	AGTCAA	10 µl	-20°C
iDeal Library Index 14 Primer for Illumina	5 '-CAAGCAGAAGACGGCATACGAGATACGAGATAC ACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3 '	AGTTCC	10 µl	-20°C
iDeal Library Index 15 Primer for Illumina	5'-CAAGCAGAAGACGGCATACGAGATTCTGACATGTG ACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3'	ATGTCA	10 µl	-20°C
iDeal Library Index 16 Primer for Illumina	5´-CAAGCAGAAGACGGCATACGAGATCG <u>GCACCG</u> GTG ACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´	CCGTCC	10 µl	-20°C
iDeal Library Index 18 Primer for Illumina	5'-CAAGCAGAAGACGGCATACGAGATG <u>TGCGGA</u> CGT GACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3'	GTCCGC	10 µl	-20°C
iDeal Library Index 19 Primer for Illumina	5´-CAAGCAGAAGACGGCATACGAGATCG ACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3	GTGAAA	10 µl	-20°C
iDeal Library Index 20 Primer for Illumina	5'-CAAGCAGAAGACGGCATACGAGATA GACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3'	GTGGCC	10 µl	-20°C
iDeal Library Index 21 Primer for Illumina	5´-CAAGCAGAAGACGGCATACGAGATTCCCGAAACGTG ACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´	GTTTCG	10 µl	-20°C
iDeal Library Index 22 Primer for Illumina	5´-CAAGCAGAAGACGGCATACGAGATTACCAGAGATTACCAGAGAGAG	CGTACG	10 µl	-20°C
iDeal Library Index 23 Primer for Illumina	5'-CAAGCAGAAGACGGCATACGAGATAT CCACTC GTG ACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3'	GAGTGG	10 µl	-20°C
iDeal Library Index 25 Primer for Illumina	5´-CAAGCAGAAGACGGCATACGAGATATATCAGTG CTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´	ACTGAT	10 µl	-20°C
iDeal Library Index 27 Primer for Illumina	5´-CAAGCAGAAGACGGCATACGAGATAAAGGCAAT ACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´	ATTCCT	10 µl	-20°C

P R O T O C O I

MANUAL PROCESSING

STEP 1 End Preparation

Starting Material

5 ng $-1 \ \mu g$ fragmented DNA.

1.1 Mix the following components in a sterile nuclease-free tube:

iDeal Library End Repair/dA-Tailing Enzyme Mix (green)	3 µl
iDeal Library End Repair/dA-Tailing Buffer (green)	6.5 µl
Fragmented DNA	55.5 µl*
TOTAL volume	65 µl

*If DNA Input is less than 55.5 μ l, complete with water up to 55.5 μ l.

- **1.2** Mix by pipetting followed by a quick spin to collect all liquid from the sides of the tube.
- **1.3** Place in a thermocycler, with the heated lid on, and run the following program:
 - 30 minutes at 20°C
 - 30 minutes at 65°C
 - Hold at 4°C

NOTE: If DNA input is < 100 ng, dilute the **iDeal Library Preparation Adaptor** for Illumina (provided at 15 μ M) 1:10 in 10mM TRIS-HCl with 10 mM NaCl to a final concentration of 1.5 μ M. Use immediately.

2.1 Add the following components directly to the iDeal Library End Prep reaction mixture and mix well:

iDeal Library Ligation Master Mix (red)	15 µl
iDeal Library Adaptor for Illumina* (red)	2.5 µl
iDeal Library Ligation Enhancer (red)	1 µl
TOTAL volume	83.5 µl

- **2.2** Incubate at **20°C** for 15 minutes in a thermal cycler.
- 2.3 Add **3 µl of iDeal Library Uracil Excision Reagent** (red) to the ligation mixture.
- 2.4 Mix well and incubate at **37°C** for 15 minutes.

NOTE: If needed samples can be stored overnight at -20°C.

Size Selection of adaptor-ligated DNA

Size selection is optional. If the starting material is less than 50 ng, size selection is not recommended. If you are not performing size selection, proceed to the next page and perform clean-up step prior to PCR amplification. The following size selection protocol is for libraries with 200 bp inserts only. For libraries with different size fragment inserts, refer to Table 4 for the appropriate volume of beads to be added. The size selection protocol is based on a starting volume of 100 µl.

<u>Table 4:</u> F	Recor	nmende	ed co	onditio	ns for	bead b	ased size	selection	۱.

Approximate insert size		150 bp	200 bp	250 bp	300 - 400 bp	400 - 500 bp	500 - 700 bp
Total Library size (insert + adaptor)		270 bp	320 bp	400 bp	400 - 500 bp	500 - 600 bp	600 - 800 bp
Volume of ligation	100 µl						
Volume of beads	1st Bead Selection	65 µl	55 µl	45 µl	40 µl	35 µl	30 µl
to add	2nd Bead Selection	25 µl	25 µl	25 µl	20 µl	15 µl	15 µl

NOTE: If neede the libraries can be stored at -20°C.

- 2.5 Vortex AMPure XP beads to resuspend.
- **2.6** Add **13.5 μl dH₂O** to the ligation reaction for a 100 μl total volume.
- **2.7** Add **55 µl of resuspended AMPure XP beads** to the 100 µl ligation reaction. Mix well by pipetting up and down at least 10 times.
- **2.8** Incubate for 5 minutes at room temperature.
- 2.9 Quickly spin the tube and place the tube on the DiaMag02 magnetic rack (Cat. No. B04000001) to separate the beads from the supernatant. After the solution is clear (about 5 minutes), carefully transfer the supernatant containing your DNA to a new tube (Caution: do not discard the supernatant). Discard the beads that contain the unwanted large fragments.

- 2.10 Add 25 µl resuspended AMPure XP beads to the supernatant, mix well and incubate for 5 minutes at room temperature.
- 2.11 Quickly spin the tube and place it on the magnetic rack to separate the beads from the supernatant. After the solution is clear (about 5 minutes), carefully remove and discard the supernatant that contains unwanted DNA. Be careful not to disturb the beads that contain the desired DNA targets (Caution: do not discard beads).
- **2.12** Add **200 μl of 80% freshly prepared ethanol** to the tube while in the magnetic rack. Incubate at room temperature for 30 seconds, and then carefully remove and discard the supernatant.
- **2.13** Repeat Step 2.12 once for a total of two washes.
- 2.14 Air the dry beads for 5 minutes while the tube is on the **magnetic** rack with the lid open.
- 2.15 Elute the DNA target from the beads into 17 µl of 10 mM Tris-HCl or 0.1 X Te, pH 8.0. Mix well on a vortex mixer or by pipetting up and down. Incubate for at least 2 minutes at room temperature. Quickly spin the tube and place it on a magnetic stand. After the solution is clear (about 5 minutes), transfer 15 µl to a new PCR tube for amplification.

NOTE: Be sure not to transfer any beads. Trace amounts of bead carry over may affect the optimal performance of the polymerase used in the iDeal Library PCR Master Mix in the subsequent PCR step.

OPTION B

Alternatively, Clean-up of adaptor-ligated DNA without Size Selection

- 2.5 Vortex AMPure XP beads to resuspend.
- 2.6 Add 86.5 µl resuspended AMPure XP beads to the ligation reaction. Mix well by pipetting up and down at least 10 times.
- 2.7 Incubate for 5 minutes at room temperature.
- 2.8 Quickly spin the tube and place it on the DiaMag02 magnetic rack (Cat. No. B04000001) to separate beads from supernatant. After the solution is clear (about 5 minutes), carefully remove and discard the supernatant. Be careful not to disturb the beads that contain DNA targets (Caution: do not discard beads).
- 2.9 Add 200 µl of 80% freshly prepared ethanol to the tube while in the magnetic rack. Incubate at room temperature for 30 seconds, and then carefully remove and discard the supernatant.
- **2.10** Repeat Step 2.9 once, for a total of two washes.
- **2.11** Air the dry beads for 5 minutes while the tube is on the magnetic stand with the lid open.
- 2.12 Elute the DNA target from the beads by adding 17 μl of 10 mM Tris-HCl, pH 8.0 or 0.1X Te.
- **2.13 NOTE**: Be sure not to transfer any beads. Trace amounts of bead carry over may affect the optimal performance of the polymerase used in the iDeal library PCR Master Mix in the subsequent PCR step.

- 2.14 Mix well by pipetting up and down, or on a vortex mixer. Incubate for at least 2 minutes at room temperature.
- **2.15** Quickly spin the tube and place it on the magnetic stand.
- **2.16** After the solution is clear (about 5 minutes), transfer **15 μl** to a new PCR tube for amplification.

STEP 3

PCR amplification

3.1 Mix the following components in sterile strip tubes:

Adaptor Ligated DNA Fragments	15 µl
iDeal Library PCR Master Mix (blue)	25 µl
iDeal Library Index Primer* (blue)	5 µl
iDeal Universal PCR Primer* (blue)	5 µl
TOTAL volume	50 µl

* These primers (Index Primer Set 1) are included. Index Primer Set 2 may be purchased separately (Cat. No. C05010021).

NOTE: If needed the samples can be stored at-20°C.

PCR cycling conditions

3.2 Transfer tubes to a pre-programmed thermal cycler and incubate as follows.

Cycle Step	Temp	Time	Cycles	
Initial Denaturation	98°C 30 seconds		1	
Denaturation	98°C 10 seconds		/ 10*	
Annealing - Extension	65°C	75 seconds	4 – 12*	
Final Extension	inal Extension 65°C 5 minutes		1	
Hold	4°C	œ		

*Suggestion: 4 PCR cycles for 1 µg DNA input, 7 - 8 cycles for 50 ng, and 12 for 5 ng DNA input. Further optimization of PCR cycle number may be required.

Clean-up of PCR amplification

- **3.3** Vortex **AMPure XP beads** to resuspend.
- **3.4** Add **45 μl of resuspended AMPure XP beads** to the PCR reactions (~50 μl). Mix well by pipetting up and down at least 10 times.
- **3.5** Incubate for 5 minutes at room temperature.
- 3.6 Quickly spin the tube and place it on DiaMag02 magnetic rack to separate beads from supernatant. After the solution is clear (about 5 minutes), carefully remove and discard the supernatant. Be careful not to disturb the beads that contain DNA targets (Caution: do not discard beads).
- **3.7** Add **200 μl of 80% ethanol** to the tubes while in the DiaMag02 magnetic rack. Incubate at room temperature for 30 seconds, and then carefully remove and discard the supernatant.
- **3.8** Repeat Step 3.7 once.
- **3.9** Air dry the beads for 5 minutes while the tubesare on the magnetic stand with the lid open.
- 3.10 Elute DNA target from beads into 33 μl of 0.1X TE. Mix well by pipetting up and down at least 10 times. Incubate for at least 2 minutes at room temperature. Quickly spin the tube and place it on an appropriate magnetic stand to separate beads from supernatant. After the solution is clear (about 5 minutes), carefully transfer 30 μl supernatant to a new PCR tube. Store libraries at -20°C.
- **3.11** Check the size distribution on an Agilent Bioanalyser High Sensitivity DNA Chip. The sample may need to be diluted before loading. A 5 fold dilution can be used.

ROTOCOL 0 AUTO

AUTOMATED PROCESSING

Protocol

The "Ideal_Library_Preparation" protocol on the iP-Star[®] Compact is using the standard iDeal Library Preparation Kit from Diagenode. The iDeal Library Preparation kit allows the preparation of indexed libraries of genomic or ChIP DNA.

It provides flexibility to prepare 1 to 32 libraries in one run starting with 5 ng of DNA. The whole protocol takes approximately 1h30. It allows you to prepare up to 96 libraries per day with 3 runs. At the end, you recover ligated products ready for amplification.

IP-Star setup

- **1.1** Switch ON the **IP-Star Compact**.
- **1.2** Select "Protocols" icon and then click on "Library prep".
- 1.3 Under "Library prep", select "Ideal_Library_Preparation".

NOTE: If you plan to run between:

- 1 and 8 samples, chose "Ideal_Library_Preparation_08"
- 9 and 16 samples, chose "Ideal_Library_Preparation_16"
- 17 and 24 samples, chose "Ideal_Library_Preparation_24"
- 25 and 32 samples, chose "Ideal_Library_Preparation_32"
- **1.4** Setup the exact number of samples that you want to process.

NOTE: The **Left Peltier Block** is now cooling down to 4°C to keep the enzymes and reagents cold.

- **1.5** Setup all the plastics on the platform according to the screen layout.
- **1.6** Fill **TIP Rack 1** (and 2 if processing more than 8 samples) with tips according to the screen.

1.7 Fill **Left and Right Peltier Blocks** with 200 µl tube strips according to the screen.

STEP 1 & 2

End Preparation and Adaptor Ligation

NOTE: Allow the reagents from **iDeal Library Preparation Kit** to come at 4°C. Work on ice from this point.

2.1 Prepare the following mixes.

• iDeal Library End Prep Mix:

Number of samples	1	8	16	24	32
iDeal Library End Repair/dA-Tailing Enzyme Mix (green)	3 µl	24 µl	48 µl	72 µl	96 µl
iDeal Library End Repair/dA-Tailing Buffer (green)	6.5 µl	52 µl	104 µl	156 µl	208 µl
TOTAL	9.5 µl	76 µl	152 µl	204 µl	280 µl

NOTE: **55.5** *µ***l** *of* **DNA** *will be added later for each sample.*

• iDeal Library Adaptor Ligation Mix:

Number of samples	1	8	16	24	32
iDeal Library Ligation Master Mix (red)	15 µl	120 µl	240 µl	360 µl	480 µl
iDeal Library Ligation Enhancer (red)	1 µl	8 µl	16 µl	24 µl	32 µl
TOTAL	16 µl	128 µl	256 µl	238 µl	512 µl

2.2 Fill the strips of the **Left Peltier Block** according to the screen layout with the following reagents:

- Ligation Mix 16 µl per well
- iDeal Library Adaptor for Illumina (red) 2.5 µl per well
- iDeal Library Uracil Excision Reagent (red) 3 µl per well

	PCR tube	
0000	Well 9-12 • Uracil Excision Reagent	3 µl
	Well 5-8 • Adaptor for Illumina Well 1-4	2.5 µl
	Adaptor Ligation Mix	16 µl
Õ	 Ligation Master Mix 	15 µl
H	 Ligation Enhancer 	1 µl

- 2.3 Fill the strips of the **Right Peltier Block** according to the screen layout with:
 - iDeal Library End Prep Mix 9.5 µl per well
 - DNA sample 55.5 µl per well

PCR tube

	Well 1-4	
	iDeal Library End Prep	65 µl
Ď	 Fragmented DNA 	55.5 µl
2	 End Repair/dA-Tailing Enzyme Mix 	3 µl
	 End Repair/dA-Tailing Buffer 	6.5 µl
)		
\mathbf{O}	Samples 25-32	
\supset	Samples 17-24	
	Samples 9-16	
C	Samples 1-8	

2.4 Close the door and Run.

OPTION A

Size Selection of adaptor-ligated DNA

Size selection is optional. If the starting material is less than 50 ng, size selection is not recommended. If you are not performing size selection, proceed to the clean-up step prior to PCR amplification.

NOTE: Use the IP-Star and room temperature AMPure XP beads for the size selection.

- 2.5 Switch on the IP-Star and select "**Protocols**" icon and then "Library prep" category.
- 2.6 Select "AMPure_XP_Size_Selection_08" if you plan to run between 1 and 8 samples, or "AMPure_XP_Size_Selection_16" if you plan to run between 9 and 16 samples.
- **2.7** Setup the exact number of samples that you want to process by pressing the black box.

NOTE: The Peltier Block 1 is now cooling down to 4°C to keep your samples cold.

2.8 Setup all the plastics on the platform according to the screen layout

- Fill **TIP Rack 1** (and 2 if processing more than 8 samples) with tips according to the screen.
- Fill **Reagent Rack 1 & 2** with reagent containers according to the screen.
- Fill **96 plate 1** with a 96 well microplate.
- Fill Peltier Block 1 with 200 µl tube strips according to the screen.

- **2.9** Fill the robot with all reagents.
 - Add 80 μl of ChIP-seq grade water to each sample to have a final volume of 100 μl. Put your samples in lane 1 (and 2 if processing more than 8 samples) of the Peltier Block 1.
 - Distribute the AMPure XP beads according to the required size following the recommendations from the table :

AMPure XP	Final size
110 µl	250 bp
100 µl	280 bp
90 µl	325 bp
80 µl	400 bp
70 µl	500 bp

We recommend to use the size selection protocol for the final library size of 325 bp (insert + adaptor).

NOTE: Resuspend the beads with pipetting up and down several times before dispense them.

- Fill the container of the **Reagent Rack 1** with freshly prepared 80% Ethanol according to the screen.
- Fill the container of **Reagent Rack 2** with Resuspension Buffer according to the screen.
- Check the proper insertion of the racks and the consumables.
- **2.10** Close the door and press "Run" to start.
- **2.11** After the run, recover your samples on the upper row of the Left Peltier Block. The final volume is 20 µl for each sample.
- 2.12 Press "OK" and "Back" until the homepage appears on the screen. Press "Shutdown" and wait until the screen is black before switching off the IP-Star.

NOTE: Remove all the plastics from the platform, empty the waste shuttle and clean the inner side of the IP-Star with 70% ethanol.

OPTION B

Alternatively, Clean-up of adaptor ligated DNA without size selection

NOTE: Use the IP-Star and room temperature AMPure XP beads for the clean-up.

- 2.5 Select "Protocols" icon and then "IPure" category.
- 2.6 Select "AMPure_XP_Purification_08" if you plan to run between 1 and 8 samples, or "AMPure_XP_Purification_16" if you plan to run between 9 and 16 samples.
- **2.7** Setup the exact number of samples that you want to process by pressing the black box.

NOTE: The Peltier Block is now cooling down to 4°C to keep your samples cold.

2.8 Setup all the plastics on the platform according to the screen layout.

- Fill **TIP Rack 1** (and 2 if processing more than 8 samples) with tips according to the screen.
- Fill **Reagent Rack 1 & 2** with reagent containers according to the screen.
- Fill **96 plate 1** with a 96 well microplate.
- Fill **Peltier Block 1** with 200 µl tube strips according to the screen.

23

- **2.9** Fill the robot with all reagents
 - Put your samples in lane 1 (and 2 if processing more than 8 samples) of the **Peltier Block 1**.
 - Distribute 86.5 µl room temperature AMPure XP beads in each well of row 1 (and 5 if processing more than 8 samples) of the 96-well Microplate.

NOTE: Resuspend the beads with pipetting up and down several times before dispense them.

- Fill the container of the **Reagent Rack 1** with freshly prepared 80% Ethanol according to the screen.
- Fill the container of **Reagent Rack 2** with Resuspension Buffer according to the screen.
- Check the proper insertion of the racks and the consumables.
- **2.10** Close the door and press "Run" to start.
- 2.11 After the run, recover your samples on the upper row of the Peltier Block 1. The final volume is 20 µl per each sample.
- 2.12 Press "OK" and "Back" until the homepage appears on the screen. Press "Shutdown" and wait until the screen is black before switching off the IP-Star.

NOTE: Remove all the plastics from the IP-Star platform, empty the waste shuttle, and clean the inner side of the IP-Star with 70% ethanol.

STEP 3 PCR amplification

3.1 Mix the following components in sterile strip tubes:

Adaptor Ligated DNA Fragments	15 µl
iDeal Library PCR Master Mix (blue)	25 µl
iDeal Library Index Primer* (blue)	5 µl
iDeal Universal PCR Primer* (blue)	5 µl
TOTAL volume	50 µl

* These primers (Index Primer Set 1) are included. Index Primer Set 2 may be purchased separately (Cat. No. C05010021).

NOTE: If needed the samples can be stored at-20°C.

PCR cycling conditions

3.2 Transfer tubes to a pre-programmed thermal cycler and incubate as follows.

Cycle Step	Temp	Time	Cycles
Initial Denaturation	98°C	30 seconds	1
Denaturation	98°C	10 seconds	/ 10*
Annealing - Extension	65°C	75 seconds	4 – 12*
Final Extension	65°C	5 minutes	1
Hold	4°C	œ	

*Suggestion: 4 PCR cycles for 1 µg DNA input, 7 - 8 cycles for 50 ng, and 12 for 5 ng DNA input. Further optimization of PCR cycle number may be required.

25

Clean-up of PCR amplification

NOTE: Use the IP-Star and room temperature AMPure XP beads for the clean-up.

- **3.3** Select "**Protocols**" icon and then "**IPure**" category.
- **3.4** Select "AMPure_XP_Purification_08" if you plan to run between 1 and 8 samples, or "AMPure_XP_Purification_16" if you plan to run between 9 and 16 samples.
- **3.5** Setup the exact number of samples that you want to process by pressing the black box.

NOTE: The Peltier Block is now cooling down to 4°C to keep your samples cold.

- **3.6** Setup all the plastics on the platform according to the screen layout.
 - Fill **TIP Rack 1** (and 2 if processing more than 8 samples) with tips according to the screen.
 - Fill **Reagent Rack 1 & 2** with reagent containers according to the screen.
 - Fill **96 plate 1** with a 96 well microplate.
 - Fill **Peltier Block 1** with 200 µl tube strips according to the screen.
- **3.7** Fill the robot with all reagents
 - Put your samples in lane 1 (and 2 if processing more than 8 samples) of the **Peltier Block 1**.
 - Distribute 45 µl room temperature AMPure XP beads in each well of row 1 (and 5 if processing more than 8 samples) of the 96-well Microplate.

NOTE: Resuspend the beads with pipetting up and down several times before dispense them.

- Fill the container of the **Reagent Rack 1** with freshly prepared 80% Ethanol according to the screen.
- Fill the container of **Reagent Rack 2** with Resuspension Buffer according to the screen.

- Check the proper insertion of the racks and the consumables.
- **3.8** Close the door and press "Run" to start.
- **3.9** After the run, recover your samples on the upper row of the **Peltier Block 1**. The final volume is 20 μl per each sample.
- **3.10** Press "OK" and "Back" until the homepage appears on the screen. Press "Shutdown" and wait until the screen is black before switching off the IP-Star.

NOTE: Remove all the plastics from the IP-Star platform, empty the waste shuttle, and clean the inner side of the IP-Star with 70% ethanol.

Related products

Product	Cat. No.
iDeal ChIP-Seq Kit for Histones	C01010051
Auto iDeal ChIP-seq Kit for Histones	C01010171
Bioruptor Pico	B01060010
IP-Star Compact Automated System	B03000002
DiaMag 0.2 ml - magnetic rack	B04000001
MagMeDIP-seq kit	C02010023
Auto MagMeDIP-seq kit	C02010016

FOR RESEARCH USE ONLY.

Not intended for any animal or human therapeutic or diagnostic use.

© 2017 Diagenode SA. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in retrieval systems, or translated into any language or computer language, in any form or by any means:electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without prior written permission from Diagenode SA (hereinafter, "Diagenode"). The information in this guide is subject to change without notice. Diagenode and/or its affiliates reserve the right to change products and services at any time to incorporate the latest technological developments. Although this guide has been prepared with every precaution to ensure accuracy, Diagenode and/or its affiliates reserve the right to application or use of this information. Diagenode welcomes customer input on corrections and suggestions for improvement.

NOTICE TO PURCHASERLIMITED LICENSE

The information provided herein is owned by Diagenode and/or its affiliates. Subject to the terms and conditions that govern your use of such products and information, Diagenode and/or its affiliates grant you a nonexclusive, nontransferable, non-sublicensable license to use such products and information only in accordance with the manuals and written instructions provided by Diagenode and/or its affiliates. You understand and agree that except as expressly set forth in the terms and conditions governing your use of such products, that no right or license to any patent or other intellectual property owned or licensable by Diagenode and/or its affiliates is conveyed or implied by providing these products. In particular, no right or license is conveyed or implied to use these products in combination with any product not provided or licensed to you by Diagenode and/or its affiliates for such use. Limited Use Label License: Research Use Only The purchase of this product conveys to the purchaser the limited, non-transferable right to use the product only to perform internal research for the sole benefit of the purchaser. No right to resell this product or any of its components is conveyed expressly, by implication, or by estoppel. This product is for internal research purposes only and is not for use in commercial applications of any kind, including, without limitation, quality control and commercial services such as reporting the results of purchaser's activities for a fee orother form of consideration. For information on obtaining additional rights, please contact info@diagenode.com.

TRADEMARKS

The trademarks mentioned herein are the property of Diagenode or their respective owners. Bioanalyzer is a trademark of Agilent Technologies, Inc. Agencourt and AMPure[®] are registered trademarks of Beckman Coulter, Inc. Illumina[®] is a registered trademark of Illumina[®]Inc; Qubit is a registered trademark of Life Technologies Corporation.

29

www.diagenode.com