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Introduction

ChIP-seq is an excellent method for studying protein-DNA interactions, providing a genome-wide profile versus the limited 
insights from ChIP-PCR; it is also useful as it addresses both important biological or technical questions such as how 
chromatin structure changes due to differential histone modifications, or, for example, it can help validate the specificity and 
sensitivity of an antibody or monitor the bias of an NGS library preparation kit. Routine ChIP-seq experiments and rigorous 
bioinformatics analysis are an integral part of Diagenode’s product development and diligent product quality control. In this 
application note we present our comprehensive analysis pipeline for analyses of ChIP-seq data. We then show a case study 
where we apply the introduced stringent analysis methods for validating a novel semi-automated ChIP method, providing an 
elegant and viable alternative to more costly automation systems.

Methods

In general every NGS data analysis workflow can be split into three major parts: primary, secondary and tertiary analysis.

The primary analysis involves the processing and QC of the raw read signals (e.g. base calling, filtering ambiguous signals, 
etc.), which are either a light signal or electric signal for most types of sequencing machines. The primary analysis is usually 
done automatically by the built-in software of the sequencer, although some algorithms have been developed for some parts 
of the workflow like improving the base calling over the standard base caller provided by Illumina. As we have found the dif-
ferences negligible, we use the default base caller outputs. At the end of the primary analysis the read files are generated.

The secondary analysis consists mostly of alignment, where reads are mapped to a reference genome. In addition for ChIP-
seq, peak calling is also performed subsequently. Thus secondary analysis yields alignment files and the detected peaks: 
sites where enrichments occurred.

The tertiary analysis is sometimes referred as “making sense” as it is usually during this step where researchers try to an-
swer their specific scientific questions. Thus, by nature tertiary analysis methods are diverse and specific, can be different for 
each study. The aim of this study was to validate Diagenode ChIP tools and methods by analyzing ChIP-seq data with rigorous 
standards and by using comparisons, annotations, statistical tests and other stringent bioinformatics methods. 

Each phase of the analysis workflow contains various steps for data processing and QC. The following section provides a 
step-by-step guide, starting with the secondary analysis, from processing the read files.

1. Alignment

For mapping the reads we usually use BWA, although we tried out other tools as well (e.g. ELAND, TMAP, Bowtie). Usually we 
have an abundance of reads, so the goal is not to align as many reads as possible, it is more important to avoid introducing 
bias by misalignments. Default settings serve this purpose well, they are stringent enough to allow only 1 or 2 mismatches 
for most aligners.

2. Controlling the read quality

We use FastQC for a reliable QC for reads: it is very informative as it reports the general base quality, read length distribu-
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tions, GC content, adapter contamination and duplicate read level among others. It can be used either with reads or align-
ments; we use it with the alignment file, which gives additional information.

3. Cross correlation analysis

We implemented the method described in the ENCODE guidelines. To summarize briefly, this method slides the positive 
and negative strand reads along the genome. Theoretically the sliding reads should meet at the size of the fragment length 
(i.e. an accumulation should occur in a distance roughly equal to the average length of fragments). Using this accumulation 
point the general enrichment level can be characterized. This method usually works well with short and uniform peaks (e.g. 
transcription factor ChIP-seq data), but produces highly questionable results for long and diverse enrichments, like histone 
marks. However, we found that with some shorter histone marks like H3K4me3, the method also usually gives reliable re-
sults.

4. Peak calling

The peak calling and its settings are crucial to obtain correct results. Inappropriate settings can easily lead to false conclu-
sions. Therefore we pay extreme attention for using and adjusting peak callers. Every dataset can be different, so finding 
the optimal settings can be an arduous trial and error procedure. As starting points we have pre-defined settings for each 
histone mark/transcription factor we use, but in many cases the special characteristics of the dataset require unique set-
tings. Usually we use MACS2 for short peaks (like most transcription factors), Sicer for long peaks (like H3K36me3) and an 
in-house developed method for ubiquitous peaks (like H3K9me3).

The subsequent methods are all part of the tertiary analysis.

5. Characterization of datasets and annotation

The tertiary analysis involves custom procedures that we use to control the quality of ChIP-seq datasets and compare them 
to each other. Below we describe the most critical parameters. These figures should always be interpreted in context, not 
individually. For example, only comparing the read numbers cannot inform which sample is better, despite the conception 
that more reads should yield more and better peaks. However if the sample with a higher read number has a lower peak 
number with less enriched peaks (shown by the lower scores) and the reads-in-peaks ratio is also lower, then certainly that 
sample is the one of lower quality.

• Read number, unique read number, duplicate read ratio: important information about library size and complexity

• Ratio of positive and negative strand reads: ideally the same number of reads comes from both strands

• Reads in peaks, genome coverage ratio: give a general idea about the enrichment profile

•  Peak number, average peak width, average peak probability score: characterize the peaks, their abundance and
their average dimensions, and the signal-to-noise ratio

•  Average peak profile: shows the average read counts across the peak length (given in percentage); used to monitor
and compare the general enrichment level and peak shape (the latter can be characteristic of certain transcription
factors / histone marks)

•  Annotation: certain histone marks (or transcription factors) have an affinity to certain genomic features, e.g.
H3K4me3 peaks are dominantly associated with promoters; with annotation we can monitor these associations

•  Visual inspection: the peak / alignment files are loaded into a viewer and the quality of the enrichments are checked
visually at selected control regions, in addition to the above statistics

6. Overlap analysis
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When we assess the quality of a ChIP-seq dataset, the most important step is perhaps the comparison to a reference data-
set, and not just by checking the above mentioned parameters, but also by determining whether the peak positions match 
in the two datasets. This truly indicates success in reproducing the expected peaks. Choosing the right reference dataset is 
the most crucial part of this analysis – we take extreme care to avoid unreliable datasets and subsequent false conclusions. 
Below we describe the comparison analyses:

•  Overlap matrix: for every peak of each sample we show how many of the peaks overlap with other peak(s) in the
other sample(s), i.e. how many peaks have a match

•  Top40% overlap analysis: similar to the previous matrix, but inspecting how many of the best 40% of the peaks have
a match; this metrics was also adapted from the ENCODE guidelines, which require at least an 80% match

•  Correlation analysis: to control the consistency of the matching datasets we also calculate the coefficient of cor-
relation between overlapping peaks, to see if the matching peaks are also similar in size; in this way we can control
random matches with false peaks

•  Average overlap profile: a graph is created showing the average shift between overlapping peaks, with this we can
control if the peaks match centrally (or e.g. only their ends overlap)

•  Bias control: similar to the above analysis, we control the distribution of peaks if they cover the 5’ or 3’ end of the
reference peaks more; ideally there should be no bias, peaks should overlap centrally each other

Results

The ChIPettor system

Diagenode has developed a novel system for chromatin immunoprecipitation based on a programmable multichannel pi-
pette. Automation or semi-automation of ChIP allows for high reproducibility by minimizing human error with minimal 
hands-on time and convenient processing of large numbers of samples. This unique ChIPettor System contains reagents for 
start-to-finish histone or transcription factor ChIP including controls, purification reagents, and a semi-automated pipettor 
with special resin pipette tips. The ChIPettor is designed to stand independently on a 96-deepwell plate while it automatically 
dispenses, pipettes, and mixes reagents using a pre-programmed ChIP protocol.

Validating the ChIPettor

In order to control the quality of the ChIPettor system we performed three ChIP-seq experiments on HeLa cells: two with 
antibodies against H3K36me3 and one with antibody against the H3K4me3 histone mark (plus an input control was also 
sequenced). Then we performed the analyses described above and compared our samples to the respective datasets of the 
ENCODE project, produced by the Broad Institute. The reads were mapped to the hg19 genome version with BWA, and Sicer 
was used for peak calling with the appropriate settings for the different histone marks. For the visual inspection we used the 
IGV software from the Broad Institute.

The results showed high quality and excellent consistency. The ChIP-seq results proved to be reproducible, and in some 
parameters outperformed the datasets of the Broad Institute. Below we describe the highlights.
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1. Sequencing and mapping quality

The FastQC reports show excellent base quality (Figure 1) and read quality.  
The duplicate levels are higher than for the ENCODE datasets but still acceptable.

2. Descriptive statistics

As Table 1 shows we have higher duplicate ratios, therefore we have similar 
(H3K4me3) or less (H3K36me3) unique reads than the ENCODE datasets. 

Despite this we achieved high quality enrichments: for the H3K4me3 we detected 
somewhat less peaks than ENCODE, but the average score, size and reads-in-peaks 
ratio is similar, while for H3K36me3 we clearly outperform the ENCODE results, the 
better enrichments and signal-to-noise ratios are evident if you compare the simi-
lar peak numbers and sizes and the higher probability scores and reads-in-peaks 
ratios that we have.

3. Average enrichment profile and read distribution

The average peak profile graphs (Figure 2A: Diagenode data, 2B: Broad Institute 
data) also show a generally better enrichment for Diagenode samples. The ratios of 
positive/negative strand reads are equal as expected.

4. Overlap matrices

In the matrices you can observe the outstanding reproducibility and consistency between the datasets for both histone marks 
(Table 2A: H3K4me3 data, 2B: H3K36me3 data). The required 80% for the top 40% of peaks is surpassed by a great extent, for 
our H3K36me3 datasets we achieved 100% overlap.

Table 1 H3K4me3 H3K36me3_1 H3K36me3_2 Broad H3K4me3 Broad H3K36me3

Total reads 50985396 46445119 60862159 35897578 60030600

Positive reads 25492691 23221540 30440149 17943221 30012039

Negative reads 25492705 23223579 30422010 17954357 30018561

Unique reads 31392576 29358920 38475441 32853368 57334020

Duplicates 19592820 17086199 22386718 3044210 2696580

Duplicate % 38,43% 36,79% 36,78% 8,48% 4,49%

Reads in peaks 13436448 16918757 23542681 12934460 22523693

RIP % 42,80% 57,63% 61,19% 39,37% 39,29%

Total peaks 20050 10695 10316 28615 10800

Average score 42,78 36,13 36,64 42,38 33,40

Average peak width 3422,16 41849,77 45206,25 3599,58 40670,02

K4 Overlap w/ H3K4me3 % Overlap w/ Broad H3K4me3 %

Peaks of H3K4me3 20050 100,00% 17031 84,94%

Top40 of H3K4me3 8020 100,00% 7929 98,87%

Peaks of Broad H3K4me3 16855 58,90% 28615 100,00%

Top40 of Broad H3K4me3 11113 97,09% 11446 100,00%

Table 2A

Figure 1

Figure 2B

Figure 2A
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5. Correlation analysis

The scatterplots (Figure 3: Correlation of Diagenode peaks (y axis) and Broad Institute peaks 
(x axis) for H3K4me3) and the Spearman’s correlation coefficients close to 1 proves that con-
sistency is also achieved in regards to the size of overlapping peaks.

7. Bias control

The graphic display (Figure 4A: Average overlap 
profile for one of the H3K36me3 samples) and the 
box-and-whiskers plots (Figure 4B: Distribution of 
position shifts of overlapping peaks of Diagenode 
and Broad Institute datasets) show no bias, and the 
matching peaks overlap each other centrally.

8. Visual inspection

The genome viewer tool visualizes the excellent 
overlaps and high quality enrichments. Figure 5A: 
A close view of the gene GAPDH in the H3k4me3 
datasets. Figure 5B: A more distant view to com-
pare the H3K36me3 datasets. The blue graph is the 
Diagenode data, the red one is the Broad Institute 
data.

Discussion

We have described the ChIPettor System, a semi-automated chromatin immunoprecipitation solution, and the rigorous 
bioinformatics and stringent ChIP-seq QC criteria applied to optimize this system. Our validation shows that the ChIPettor 
System is indeed capable of producing high quality ChIP-seq results with excellent signal-to-noise ratios, consistency and 
reproducibility. In many instances, the generated data outperformed the ENCODE datasets. The ChIPettor also requires only 
minimal preparation and hands-on time. Ultimately it is a true alternative to more costly robotic automation systems.

K36 overlap w/ H3K36me3_1 % overlap w/ H3K36me3_2 % overlap w/ Broad H3K36me3 %

Peaks of H3K36me3_1 10695 100,00% 10385 97,10% 8954 83,72%

Top40 of H3K36me3_1 4278 100,00% 4278 100,00% 4175 97,59%

Peaks of H3K36me3_2 9730 94,32% 10316 100,00% 8599 83,36%

Top40 of H3K36me3_2 4126 100,00% 4126 100,00% 4029 97,65%

Peaks of Broad H3K36me3 9424 87,26% 9535 88,29% 10800 100,00%

Top40 of Broad H3K36me3 4274 98,94% 4278 99,03% 4320 100,00%

Table 2B

Figure 3

Figure 4A

Figure 5A Figure 5B

Figure 4B
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