The LowCell# ChIP kit has been validated using chromatin sheared by sonication using the Bioruptor®. The Kit includes a DNA purifying slurry for a fast method to purify your IP’d material (for qPCR analysis).
The LowCell# ChIP kit protein A is one of Diagenode old generation ChIP kits, still present in the catalogue. At present we highly recommend our new generation True MicroChIP kit with optimized reagents and protocol to enable successful ChIP/ChIP-seq on as few as 10 000 cells. Read more about our True MicroChIP kit.
The LowCell# ChIP kit has been validated using chromatin sheared by sonication using the Bioruptor®. The Kit includes a DNA purifying slurry for a fast method to purify your IP’d material (for qPCR analysis).
LowCell# ChIP kit MANUAL Diagenode provides kits with optimized reagents and simplified protocols for ChIP includi... | Download |
Chromatin Brochure BROCHURE Whether you are experienced or new to the field of chromatin immunoprecipitation, Diagenode has e... | Download |
LowCell ChIP kit protein A SDS GB en | Download |
LowCell ChIP kit protein A SDS US en | Download |
LowCell ChIP kit protein A SDS BE nl | Download |
LowCell ChIP kit protein A SDS BE fr | Download |
LowCell ChIP kit protein A SDS FR fr | Download |
LowCell ChIP kit protein A SDS ES es | Download |
LowCell ChIP kit protein A SDS DE de | Download |
LowCell ChIP kit protein A SDS JP ja | Download |
![]() How to properly cite this product in your workDiagenode strongly recommends using this: LowCell# ChIP kit protein A (Diagenode Cat# C01010072). Click here to copy to clipboard. Using our products in your publication? Let us know! |
Heterochromatin protein 1γ deficiency decreases histone H3K27 methylation in mouse neurosphere neuronal genes. |
SIRT1/2 orchestrate acquisition of DNA methylation and loss of histone H3 activating marks to prevent premature activation of inflammatory genes in macrophages. |
Identification and Massively Parallel Characterization of Regulatory Elements Driving Neural Induction |
Epigenetic remodelling licences adult cholangiocytes for organoid formation and liver regeneration. |
Hyper-Editing of Cell-Cycle Regulatory and Tumor Suppressor RNA Promotes Malignant Progenitor Propagation. |
Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes. |
The transcription factor Lef1 switches partners from β-catenin to Smad3 during muscle stem cell quiescence. |
A LINE1-Nucleolin Partnership Regulates Early Development and ESC Identity. |
Whole-Genome Sequencing of Pharmacogenetic Drug Response in Racially Diverse Children with Asthma. |
Replication-coupled histone H3.1 deposition determines nucleosome composition and heterochromatin dynamics during Arabidopsis seedling development. |
The Transcriptionally Permissive Chromatin State of Embryonic Stem Cells Is Acutely Tuned to Translational Output. |
Oestrogen Receptor-α binds the FOXP3 promoter and modulates regulatory T-cell function in human cervical cancer |
Distinguishing States of Arrest: Genome-Wide Descriptions of Cellular Quiescence Using ChIP-Seq and RNA-Seq Analysis. |
Rapid Communication: The correlation between histone modifications and expression of key genes involved in accumulation of adipose tissue in the pig. |
TET2- and TDG-mediated changes are required for the acquisition of distinct histone modifications in divergent terminal differentiation of myeloid cells |
5-hydroxymethylcytosine accumulation in postmitotic neurons results in functional demethylation of expressed genes |
Epigenome profiling and editing of neocortical progenitor cells during development |
Viral driven epigenetic events alter the expression of cancer-related genes in Epstein-Barr-virus naturally infected Burkitt lymphoma cell lines |
Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b |
A chronic low dose of Δ9-tetrahydrocannabinol (THC) restores cognitive function in old mice |
PPARγ Links BMP2 and TGFβ1 Pathways in Vascular Smooth Muscle Cells, Regulating Cell Proliferation and Glucose Metabolism |
JMJD3 aids in reprogramming of bone marrow progenitor cells to hepatic phenotype through epigenetic activation of hepatic transcription factors |
Chromatin Domain Organization of TCRb locus and its perturbation by ectopic CTCF binding |
Genomic Characterization of Metformin Hepatic Response |
DNA demethylation of inflammasome-associated genes is enhanced in patients with cryopyrin-associated periodic syndromes |
Molecular mechanisms in H2O2-induced increase in AT1 receptor gene expression in cardiac fibroblasts: a role for endogenously generated Angiotensin II. |
Epigenetic alterations of CYP19A1 gene in Cumulus cells and its relevance to infertility in endometriosis |
Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death |
Desensitization and incomplete recovery of hepatic target genes after chronic thyroid hormone treatment and withdrawal in male adult mice |
Molecular basis and functional significance of Angiotensin II-induced increase in Discoidin Domain Receptor 2 gene expression in cardiac fibroblasts |
An Insulator Element Located at the Cyclin B1 Interacting Protein 1 Gene Locus Is Highly Conserved among Mammalian Species |
Notice (8): Undefined variable: solution_of_interest [APP/View/Products/view.ctp, line 755]Code Context<!-- BEGIN: REQUEST_FORM MODAL -->
<div id="request_formModal" class="reveal-modal medium" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog">
<?= $this->element('Forms/simple_form', array('solution_of_interest' => $solution_of_interest, 'header' => $header, 'message' => $message, 'campaign_id' => $campaign_id)) ?>
$viewFile = '/home/website-server/www/app/View/Products/view.ctp' $dataForView = array( 'language' => 'en', 'meta_keywords' => '', 'meta_description' => 'LowCell# ChIP kit protein A x48', 'meta_title' => 'LowCell# ChIP kit protein A x48', 'product' => array( 'Product' => array( 'id' => '1849', 'antibody_id' => null, 'name' => 'LowCell# ChIP kit protein A', 'description' => '<p>The LowCell# ChIP kit protein A is one of Diagenode old generation ChIP kits, still present in the catalogue. At present we highly recommend our new generation <strong>True MicroChIP kit</strong> with optimized reagents and protocol to enable successful <strong>ChIP/ChIP-seq</strong> on as few as <strong>10 000 cells</strong>. Read more about our <a href="https://www.diagenode.com/en/p/true-microchip-kit-x16-16-rxns">True MicroChIP kit</a>.</p> <p><span> </span></p>', 'label1' => 'Characteristics', 'info1' => '<p>The LowCell# ChIP kit has been validated using chromatin sheared by sonication using the Bioruptor<sup>®</sup>. The Kit includes a DNA purifying slurry for a fast method to purify your IP’d material (for qPCR analysis).</p>', 'label2' => '', 'info2' => '', 'label3' => '', 'info3' => '', 'format' => '48 rxns', 'catalog_number' => 'C01010072', 'old_catalog_number' => 'kch-maglow-A48', 'sf_code' => 'C01010072-', 'type' => 'RFR', 'search_order' => '04-undefined', 'price_EUR' => '1100', 'price_USD' => '1185', 'price_GBP' => '1005', 'price_JPY' => '188700', 'price_CNY' => '', 'price_AUD' => '2965', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => '0000-00-00', 'slug' => 'lowcell-chip-kit-protein-a-x48-48-rxns', 'meta_title' => 'LowCell# ChIP kit protein A x48', 'meta_keywords' => '', 'meta_description' => 'LowCell# ChIP kit protein A x48', 'modified' => '2019-05-17 11:02:05', 'created' => '2015-06-29 14:08:20', 'locale' => 'eng' ), 'Antibody' => array( 'host' => '*****', 'id' => null, 'name' => null, 'description' => null, 'clonality' => null, 'isotype' => null, 'lot' => null, 'concentration' => null, 'reactivity' => null, 'type' => null, 'purity' => null, 'classification' => null, 'application_table' => null, 'storage_conditions' => null, 'storage_buffer' => null, 'precautions' => null, 'uniprot_acc' => null, 'slug' => null, 'meta_keywords' => null, 'meta_description' => null, 'modified' => null, 'created' => null, 'select_label' => null ), 'Slave' => array( (int) 0 => array( [maximum depth reached] ) ), 'Group' => array( 'Group' => array( [maximum depth reached] ), 'Master' => array( [maximum depth reached] ), 'Product' => array( [maximum depth reached] ) ), 'Related' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ) ), 'Application' => array( (int) 0 => array( [maximum depth reached] ) ), 'Category' => array( (int) 0 => array( [maximum depth reached] ) ), 'Document' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ) ), 'Feature' => array(), 'Image' => array( (int) 0 => array( [maximum depth reached] ) ), 'Promotion' => array(), 'Protocol' => array(), 'Publication' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ), (int) 8 => array( [maximum depth reached] ), (int) 9 => array( [maximum depth reached] ), (int) 10 => array( [maximum depth reached] ), (int) 11 => array( [maximum depth reached] ), (int) 12 => array( [maximum depth reached] ), (int) 13 => array( [maximum depth reached] ), (int) 14 => array( [maximum depth reached] ), (int) 15 => array( [maximum depth reached] ), (int) 16 => array( [maximum depth reached] ), (int) 17 => array( [maximum depth reached] ), (int) 18 => array( [maximum depth reached] ), (int) 19 => array( [maximum depth reached] ), (int) 20 => array( [maximum depth reached] ), (int) 21 => array( [maximum depth reached] ), (int) 22 => array( [maximum depth reached] ), (int) 23 => array( [maximum depth reached] ), (int) 24 => array( [maximum depth reached] ), (int) 25 => array( [maximum depth reached] ), (int) 26 => array( [maximum depth reached] ), (int) 27 => array( [maximum depth reached] ), (int) 28 => array( [maximum depth reached] ), (int) 29 => array( [maximum depth reached] ), (int) 30 => array( [maximum depth reached] ) ), 'Testimonial' => array(), 'Area' => array(), 'SafetySheet' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ) ) ), 'meta_canonical' => 'https://www.diagenode.com/en/p/lowcell-chip-kit-protein-a-x48-48-rxns' ) $language = 'en' $meta_keywords = '' $meta_description = 'LowCell# ChIP kit protein A x48' $meta_title = 'LowCell# ChIP kit protein A x48' $product = array( 'Product' => array( 'id' => '1849', 'antibody_id' => null, 'name' => 'LowCell# ChIP kit protein A', 'description' => '<p>The LowCell# ChIP kit protein A is one of Diagenode old generation ChIP kits, still present in the catalogue. At present we highly recommend our new generation <strong>True MicroChIP kit</strong> with optimized reagents and protocol to enable successful <strong>ChIP/ChIP-seq</strong> on as few as <strong>10 000 cells</strong>. Read more about our <a href="https://www.diagenode.com/en/p/true-microchip-kit-x16-16-rxns">True MicroChIP kit</a>.</p> <p><span> </span></p>', 'label1' => 'Characteristics', 'info1' => '<p>The LowCell# ChIP kit has been validated using chromatin sheared by sonication using the Bioruptor<sup>®</sup>. The Kit includes a DNA purifying slurry for a fast method to purify your IP’d material (for qPCR analysis).</p>', 'label2' => '', 'info2' => '', 'label3' => '', 'info3' => '', 'format' => '48 rxns', 'catalog_number' => 'C01010072', 'old_catalog_number' => 'kch-maglow-A48', 'sf_code' => 'C01010072-', 'type' => 'RFR', 'search_order' => '04-undefined', 'price_EUR' => '1100', 'price_USD' => '1185', 'price_GBP' => '1005', 'price_JPY' => '188700', 'price_CNY' => '', 'price_AUD' => '2965', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => '0000-00-00', 'slug' => 'lowcell-chip-kit-protein-a-x48-48-rxns', 'meta_title' => 'LowCell# ChIP kit protein A x48', 'meta_keywords' => '', 'meta_description' => 'LowCell# ChIP kit protein A x48', 'modified' => '2019-05-17 11:02:05', 'created' => '2015-06-29 14:08:20', 'locale' => 'eng' ), 'Antibody' => array( 'host' => '*****', 'id' => null, 'name' => null, 'description' => null, 'clonality' => null, 'isotype' => null, 'lot' => null, 'concentration' => null, 'reactivity' => null, 'type' => null, 'purity' => null, 'classification' => null, 'application_table' => null, 'storage_conditions' => null, 'storage_buffer' => null, 'precautions' => null, 'uniprot_acc' => null, 'slug' => null, 'meta_keywords' => null, 'meta_description' => null, 'modified' => null, 'created' => null, 'select_label' => null ), 'Slave' => array( (int) 0 => array( 'id' => '96', 'name' => 'C01010072', 'product_id' => '1849', 'modified' => '2016-02-19 11:06:54', 'created' => '2016-02-19 11:06:54' ) ), 'Group' => array( 'Group' => array( 'id' => '96', 'name' => 'C01010072', 'product_id' => '1849', 'modified' => '2016-02-19 11:06:54', 'created' => '2016-02-19 11:06:54' ), 'Master' => array( 'id' => '1849', 'antibody_id' => null, 'name' => 'LowCell# ChIP kit protein A', 'description' => '<p>The LowCell# ChIP kit protein A is one of Diagenode old generation ChIP kits, still present in the catalogue. At present we highly recommend our new generation <strong>True MicroChIP kit</strong> with optimized reagents and protocol to enable successful <strong>ChIP/ChIP-seq</strong> on as few as <strong>10 000 cells</strong>. Read more about our <a href="https://www.diagenode.com/en/p/true-microchip-kit-x16-16-rxns">True MicroChIP kit</a>.</p> <p><span> </span></p>', 'label1' => 'Characteristics', 'info1' => '<p>The LowCell# ChIP kit has been validated using chromatin sheared by sonication using the Bioruptor<sup>®</sup>. The Kit includes a DNA purifying slurry for a fast method to purify your IP’d material (for qPCR analysis).</p>', 'label2' => '', 'info2' => '', 'label3' => '', 'info3' => '', 'format' => '48 rxns', 'catalog_number' => 'C01010072', 'old_catalog_number' => 'kch-maglow-A48', 'sf_code' => 'C01010072-', 'type' => 'RFR', 'search_order' => '04-undefined', 'price_EUR' => '1100', 'price_USD' => '1185', 'price_GBP' => '1005', 'price_JPY' => '188700', 'price_CNY' => '', 'price_AUD' => '2965', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => '0000-00-00', 'slug' => 'lowcell-chip-kit-protein-a-x48-48-rxns', 'meta_title' => 'LowCell# ChIP kit protein A x48', 'meta_keywords' => '', 'meta_description' => 'LowCell# ChIP kit protein A x48', 'modified' => '2019-05-17 11:02:05', 'created' => '2015-06-29 14:08:20' ), 'Product' => array( (int) 0 => array( [maximum depth reached] ) ) ), 'Related' => array( (int) 0 => array( 'id' => '1787', 'antibody_id' => null, 'name' => 'Bioruptor<sup>®</sup> Pico sonication device', 'description' => '<p><a href="https://go.diagenode.com/bioruptor-upgrade"><img src="https://www.diagenode.com/img/banners/banner-br-trade.png" /></a></p> <p>The Bioruptor® Pico (2013-2019) represented a breakthrough for shearing micro-volumes of 5 μl to larger volumes of up to 2 ml. <span>The new generation keeps the features you like the most and bring even more innovation. Check it now:</span></p> <center><span></span></center><center><a href="https://www.diagenode.com/p/bioruptorpico2"> <img alt="New Bioruptor Pico" src="https://www.diagenode.com/img/product/shearing_technologies/new-pico-product-banner.jpg" /></a></center> <p></p> <p><span>Watch our short video about the Bioruptor Pico and how it can help you accomplish perfect shearing for any application including chromatin shearing, DNA shearing for NGS, unmatched DNA extraction from FFPE samples, RNA shearing, protein extraction, and much more.</span></p> <p> <script>// <![CDATA[ (function(){var qs,js,q,s,d=document,gi=d.getElementById,ce=d.createElement,gt=d.getElementsByTagName,id='typef_orm',b='https://s3-eu-west-1.amazonaws.com/share.typeform.com/';if(!gi.call(d,id)){js=ce.call(d,'script');js.id=id;js.src=b+'share.js';q=gt.call(d,'script')[0];q.parentNode.insertBefore(js,q)}id=id+'_';if(!gi.call(d,id)){qs=ce.call(d,'link');qs.rel='stylesheet';qs.id=id;qs.href=b+'share-button.css';s=gt.call(d,'head')[0];s.appendChild(qs,s)}})() // ]]></script> </p> <center><iframe width="560" height="315" src="https://www.youtube.com/embed/ckLc4owudIM" frameborder="0" allowfullscreen="allowfullscreen"></iframe></center><center> <p></p> </center><center><a href="https://www.diagenode.com/en/pages/osha"><img src="https://www.diagenode.com/img/banners/banner-osha-580.jpg" width="635" height="243" /></a></center> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div>', 'label1' => 'User manual ', 'info1' => '<p><a href="https://www.diagenode.com/files/products/shearing_technology/bioruptor/Bioruptor_pico_cooler_manual.pdf">Download</a></p> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div>', 'label2' => 'Recommended settings for DNA shearing with Bioruptor® Pico', 'info2' => '<p>Follow our guidelines and find the good parameters for your expected DNA size: <a href="https://pybrevet.typeform.com/to/o8cQfM">DNA shearing with the Bioruptor® Pico</a></p> <p></p> <p> <script>// <![CDATA[ (function(){var qs,js,q,s,d=document,gi=d.getElementById,ce=d.createElement,gt=d.getElementsByTagName,id='typef_orm',b='https://s3-eu-west-1.amazonaws.com/share.typeform.com/';if(!gi.call(d,id)){js=ce.call(d,'script');js.id=id;js.src=b+'share.js';q=gt.call(d,'script')[0];q.parentNode.insertBefore(js,q)}id=id+'_';if(!gi.call(d,id)){qs=ce.call(d,'link');qs.rel='stylesheet';qs.id=id;qs.href=b+'share-button.css';s=gt.call(d,'head')[0];s.appendChild(qs,s)}})() // ]]></script> </p> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div>', 'label3' => 'Available chromatin shearing kits', 'info3' => '<p>It is important to establish optimal conditions to shear crosslinked chromatin to get the correct fragment sizes needed for ChIP. Usually this process requires both optimizing sonication conditions as well as optimizing SDS concentration, which is laborious. With the Chromatin Shearing Optimization Kits, optimization is fast and easy - we provide optimization reagents with varying concentrations of SDS. Moreover, our Chromatin Shearing Optimization Kits can be used for the optimization of chromatin preparation with our kits for ChIP.</p> <table style="width: 925px;"> <tbody> <tr valign="middle"> <td style="width: 213px;"></td> <td style="text-align: center; width: 208px;"><strong><a href="../p/chromatin-shearing-optimization-kit-low-sds-100-million-cells">Chromatin Shearing Kit Low SDS (for Histones)</a></strong></td> <td style="text-align: center; width: 180px;"><strong><a href="../p/chromatin-shearing-optimization-kit-low-sds-for-tfs-25-rxns">Chromatin Shearing Kit Low SDS (for TF)</a></strong></td> <td style="text-align: center; width: 154px;"><strong><a href="../p/chromatin-shearing-optimization-kit-high-sds-100-million-cells">Chromatin Shearing Kit High SDS</a></strong></td> <td style="text-align: center; width: 155px;"><strong><a href="../p/chromatin-shearing-plant-chip-seq-kit">Chromatin Shearing Kit (for Plant)</a></strong></td> </tr> <tr style="background-color: #fff;" valign="middle"> <td style="width: 213px;"> <p style="text-align: left;"><strong>SDS concentration</strong></p> </td> <td style="text-align: center; width: 208px;"> <p style="text-align: center;">< 0.1%</p> </td> <td style="text-align: center; width: 180px;"> <p style="text-align: center;">0.2%</p> </td> <td style="text-align: center; width: 154px;"> <p style="text-align: center;">1%</p> </td> <td style="text-align: center; width: 155px;"> <p style="text-align: center;">0.5%</p> </td> </tr> <tr style="background-color: #fff;" valign="middle"> <td style="width: 213px;"> <p style="text-align: left;"><strong>Nuclei isolation</strong></p> </td> <td style="text-align: center; width: 208px;"> <p style="text-align: center;">Yes</p> </td> <td style="text-align: center; width: 180px;"> <p style="text-align: center;">Yes</p> </td> <td style="text-align: center; width: 154px;"> <p style="text-align: center;">No</p> </td> <td style="text-align: center; width: 155px;"> <p style="text-align: center;">Yes</p> </td> </tr> <tr style="background-color: #fff;" valign="middle"> <td style="width: 213px;"> <p style="text-align: left;"><strong>Allows for shearing of... cells/tissue</strong></p> </td> <td style="text-align: center; width: 208px;"> <p style="text-align: center;">100 million cells</p> </td> <td style="text-align: center; width: 180px;"> <p style="text-align: center;">100 million cells</p> </td> <td style="text-align: center; width: 154px;"> <p style="text-align: center;">100 million cells</p> </td> <td style="text-align: center; width: 155px;"> <p style="text-align: center;">up to 25 g of tissue</p> </td> </tr> <tr style="background-color: #fff;" valign="middle"> <td style="width: 213px;"> <p style="text-align: left;"><strong>Corresponding to shearing buffers from</strong></p> </td> <td style="text-align: center; width: 208px;"> <p style="text-align: center;"><a href="../p/ideal-chip-seq-kit-x24-24-rxns">iDeal ChIP-seq kit for Histones</a></p> <p style="text-align: center;"><a href="https://www.diagenode.com/en/p/manual-chipmentation-kit-for-histones-24-rxns">ChIPmentation Kit for Histones</a></p> </td> <td style="text-align: center; width: 180px;"> <p style="text-align: center;"><a href="../p/ideal-chip-seq-kit-for-transcription-factors-x24-24-rxns">iDeal ChIP-seq Kit for Transcription Factors</a></p> <p style="text-align: center;"><a href="../p/ideal-chip-qpcr-kit">iDeal ChIP qPCR kit</a></p> </td> <td style="text-align: center; width: 154px;"> <p style="text-align: center;"><a href="../p/true-microchip-kit-x16-16-rxns">True MicroChIP kit</a></p> </td> <td style="text-align: center; width: 155px;"> <p style="text-align: center;"><a href="../p/universal-plant-chip-seq-kit-x24-24-rxns">Universal Plant <br />ChIP-seq kit</a></p> </td> </tr> </tbody> </table> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div>', 'format' => '1 unit', 'catalog_number' => 'B01060010', 'old_catalog_number' => '', 'sf_code' => 'B01060010-', 'type' => 'ACC', 'search_order' => '00-Machine', 'price_EUR' => '22700', 'price_USD' => '26250', 'price_GBP' => '20150', 'price_JPY' => '3291500', 'price_CNY' => 'Discontinued', 'price_AUD' => '65625', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => true, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => '0000-00-00', 'slug' => 'bioruptor-pico-sonication-device', 'meta_title' => 'Bioruptor® Pico sonication device for RNA,Chromatin and DNA shearing for Next-Generation-Sequencing | Diagenode', 'meta_keywords' => 'Bioruptor, sonication, Next-Generation-Sequencing,DNA shearing,Protein extraction', 'meta_description' => 'An all-in-one shearing system Ideal for DNA shearing for Next-Generation-Sequencing,Chromatin shearing,RNA shearing,Protein extraction from tissues and cells and FFPE DNA extraction', 'modified' => '2021-07-14 13:47:33', 'created' => '2015-06-29 14:08:20', 'ProductsRelated' => array( [maximum depth reached] ), 'Image' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '1819', 'antibody_id' => null, 'name' => 'DiaMag 0.2ml - magnetic rack', 'description' => '<p>The DiaMag02 is a powerful magnet which has been designed for controlled and rapid isolation of your DNA bound to magnetic beads. It allows for processing 16 samples at a time.</p>', 'label1' => '', 'info1' => '', 'label2' => '', 'info2' => '', 'label3' => '', 'info3' => '', 'format' => '1 unit', 'catalog_number' => 'B04000001', 'old_catalog_number' => 'kch-816-001', 'sf_code' => 'B04000001-', 'type' => 'ACC', 'search_order' => '04-undefined', 'price_EUR' => '230', 'price_USD' => '225', 'price_GBP' => '205', 'price_JPY' => '40700', 'price_CNY' => '', 'price_AUD' => '565', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => '0000-00-00', 'slug' => 'diamag02-magnetic-rack-1-unit', 'meta_title' => 'DiaMag02 - magnetic rack', 'meta_keywords' => '', 'meta_description' => 'DiaMag02 - magnetic rack', 'modified' => '2019-06-11 16:27:35', 'created' => '2015-06-29 14:08:20', 'ProductsRelated' => array( [maximum depth reached] ), 'Image' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '2173', 'antibody_id' => '115', 'name' => 'H3K4me3 polyclonal antibody ', 'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone H3 containing the trimethylated lysine 4 (H3K4me3), using a KLH-conjugated synthetic peptide.</span></p> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script>', 'label1' => 'Validation Data', 'info1' => '<div class="row"> <div class="small-6 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig1-ChIP.jpg" /></center></div> <div class="small-6 columns"> <p><small><strong>Figure 1. ChIP results obtained with the Diagenode antibody directed against H3K4me3</strong><br />ChIP assays were performed using human K562 cells, the Diagenode antibody against H3K4me3 (cat. No. C15410003) and optimized PCR primer pairs for qPCR. ChIP was performed with the iDeal ChIP-seq kit (cat. No. C01010051), using sheared chromatin from 500,000 cells. A titration consisting of 0.5, 1, 2 and 5 µg of antibody per ChIP experiment was analyzed. IgG (1 µg/IP) was used as a negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes GAPDH and EIF4A2, used as positive controls, and for the inactive MYOD1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p> </div> </div> <div class="row"> <div class="small-12 columns"><center>A.<img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig2a-ChIP-seq.jpg" width="800" /></center><center>B.<img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig2b-ChIP-seq.jpg" width="800" /></center><center>C.<img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig2c-ChIP-seq.jpg" width="800" /></center><center>D.<img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig2d-ChIP-seq.jpg" width="800" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H3K4me3</strong><br />ChIP was performed on sheared chromatin from 1 million HeLaS3 cells using 1 µg of the Diagenode antibody against H3K4me3 (cat. No. C15410003) as described above. The IP'd DNA was subsequently analysed on an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer's instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 600 kb region of the X-chromosome (figure 2A and B) and in two regions surrounding the GAPDH and EIF4A2 positive control genes, respectively (figure 2C and D). These results clearly show an enrichment of the H3K4 trimethylation at the promoters of active genes.</small></p> </div> </div> <div class="row"> <div class="small-12 columns"><center>A.<img src="https://www.diagenode.com/img/product/antibodies/C15410003-cuttag-a.png" width="800" /></center></div> <div class="small-12 columns"><center>B.<img src="https://www.diagenode.com/img/product/antibodies/C15410003-cuttag-b.png" width="800" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 3. Cut&Tag results obtained with the Diagenode antibody directed against H3K4me3</strong><br />CUT&TAG (Kaya-Okur, H.S., Nat Commun 10, 1930, 2019) was performed on 50,000 K562 cells using 0.5 µg of the Diagenode antibody against H3K4me3 (cat. No. C15410003) and the Diagenode pA-Tn5 transposase (C01070001). The libraries were subsequently analysed on an Illumina NextSeq 500 sequencer (2x75 paired-end reads) according to the manufacturer's instructions. The tags were aligned to the human genome (hg19) using the BWA algorithm. Figure 3 shows the peak distribution in 2 genomic regions surrounding the FOS gene on chromosome 14 and the ACTB gene on chromosome 7 (figure 3A and B, respectively).</small></p> </div> </div> <div class="row"> <div class="small-6 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig3-ELISA.jpg" width="350" /></center><center></center><center></center><center></center><center></center></div> <div class="small-6 columns"> <p><small><strong>Figure 4. Determination of the antibody titer</strong><br />To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H3K4me3 (cat. No. C15410003). The antigen used was a peptide containing the histone modification of interest. By plotting the absorbance against the antibody dilution (Figure 4), the titer of the antibody was estimated to be 1:11,000.</small></p> </div> </div> <div class="row"> <div class="small-6 columns"><img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig4-DB.jpg" /></div> <div class="small-6 columns"> <p><small><strong>Figure 5. Cross reactivity tests using the Diagenode antibody directed against H3K4me3</strong><br />To test the cross reactivity of the Diagenode antibody against H3K4me3 (cat. No. C15410003), a Dot Blot analysis was performed with peptides containing other histone modifications and the unmodified H3K4. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:2,000. Figure 5A shows a high specificity of the antibody for the modification of interest.</small></p> </div> </div> <div class="row"> <div class="small-4 columns"><img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig5-WB.jpg" /></div> <div class="small-8 columns"> <p><small><strong>Figure 6. Western blot analysis using the Diagenode antibody directed against H3K4me3</strong><br />Western blot was performed on whole cell extracts (40 µg, lane 1) from HeLa cells, and on 1 µg of recombinant histone H3 (lane 2) using the Diagenode antibody against H3K4me3 (cat. No. C15410003). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right; the marker (in kDa) is shown on the left.</small></p> </div> </div> <div class="row"> <div class="small-12 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig6-if.jpg" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 7. Immunofluorescence using the Diagenode antibody directed against H3K4me3</strong><br />HeLa cells were stained with the Diagenode antibody against H3K4me3 (cat. No. C15410003) and with DAPI. Cells were fixed with 4% formaldehyde for 20’ and blocked with PBS/TX-100 containing 5% normal goat serum. The cells were immunofluorescently labelled with the H3K4me3 antibody (left) diluted 1:200 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa568 or with DAPI (middle), which specifically labels DNA. The right picture shows a merge of both stainings.</small></p> </div> </div> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script>', 'label2' => '', 'info2' => '<p>Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called "histone code". Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Methylation of histone H3K4 is associated with activation of gene transcription.</p> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script>', 'label3' => '', 'info3' => '<p></p> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script>', 'format' => '50 µg', 'catalog_number' => 'C15410003-50', 'old_catalog_number' => 'pAb-003-050', 'sf_code' => 'C15410003-D001-000581', 'type' => 'FRE', 'search_order' => '03-Antibody', 'price_EUR' => '460', 'price_USD' => '450', 'price_GBP' => '410', 'price_JPY' => '67700', 'price_CNY' => '', 'price_AUD' => '1125', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => 'January 8, 2021', 'slug' => 'h3k4me3-polyclonal-antibody-premium-50-ug-50-ul', 'meta_title' => 'H3K4me3 polyclonal antibody - Premium', 'meta_keywords' => '', 'meta_description' => 'H3K4me3 polyclonal antibody - Premium', 'modified' => '2022-06-29 14:42:46', 'created' => '2015-06-29 14:08:20', 'ProductsRelated' => array( [maximum depth reached] ), 'Image' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '2264', 'antibody_id' => '121', 'name' => 'H3K9me3 Antibody', 'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone<strong> H3 containing the trimethylated lysine 9</strong> (<strong>H3K9me3</strong>), using a KLH-conjugated synthetic peptide.</span></p>', 'label1' => 'Validation Data', 'info1' => '<div class="row"> <div class="small-6 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410193-ChIP-Fig1.png" /></center></div> <div class="small-6 columns"> <p><small><strong>Figure 1. ChIP results obtained with the Diagenode antibody directed against H3K9me3</strong><br />ChIP assays were performed using human HeLa cells, the Diagenode antibody against H3K9me3 (cat. No. C15410193) and optimized PCR primer sets for qPCR. ChIP was performed on sheared chromatin from 1 million HeLaS3 cells using the “iDeal ChIP-seq” kit (cat. No. C01010051). A titration of the antibody consisting of 0.5, 1, 2, and 5 µg per ChIP experiment was analysed. IgG (1 µg/IP) was used as negative IP control. QPCR was performed with primers for the heterochromatin marker Sat2 and for the ZNF510 gene, used as positive controls, and for the promoters of the active EIF4A2 and GAPDH genes, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis).</small></p> </div> </div> <div class="row"> <div class="small-12 columns"><center>A.<img src="https://www.diagenode.com/img/product/antibodies/C15410193-ChIP-Fig2a.png" width="700" /></center><center>B.<img src="https://www.diagenode.com/img/product/antibodies/C15410193-ChIP-Fig2b.png" width="700" /></center><center>C.<img src="https://www.diagenode.com/img/product/antibodies/C15410193-ChIP-Fig2c.png" width="700" /></center><center>D.<img src="https://www.diagenode.com/img/product/antibodies/C15410193-ChIP-Fig2d.png" width="700" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H3K9me3</strong><br />ChIP was performed with 0.5 µg of the Diagenode antibody against H3K9me3 (cat. No. C15410193) on sheared chromatin from 1,000,000 HeLa cells using the “iDeal ChIP-seq” kit as described above. The IP'd DNA was subsequently analysed on an Illumina HiSeq 2000. Library preparation, cluster generation and sequencing were performed according to the manufacturer's instructions. The 50 bp tags were aligned to the human genome using the BWA algorithm. Figure 2A shows the signal distribution along the long arm of chromosome 19 and a zoomin to an enriched region containing several ZNF repeat genes. The arrows indicate two satellite repeat regions which exhibit a stronger signal. Figures 2B, 2C and 2D show the enrichment along the ZNF510 positive control target and at the H19 and KCNQ1 imprinted genes.</small></p> </div> </div> <div class="row"> <div class="small-12 columns"><center>A.<img src="https://www.diagenode.com/img/product/antibodies/C15410193-CT-Fig3a.png" width="700" /></center><center>B.<img src="https://www.diagenode.com/img/product/antibodies/C15410193-CT-Fig3b.png" width="700" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 3. Cut&Tag results obtained with the Diagenode antibody directed against H3K9me3</strong><br />CUT&TAG (Kaya-Okur, H.S., Nat Commun 10, 1930, 2019) was performed on 50,000 K562 cells using 1 µg of the Diagenode antibody against H3K9me3 (cat. No. C15410193) and the Diagenode pA-Tn5 transposase (C01070001). The libraries were subsequently analysed on an Illumina NextSeq 500 sequencer (2x75 paired-end reads) according to the manufacturer's instructions. The tags were aligned to the human genome (hg19) using the BWA algorithm. Figure 3 shows the peak distribution in a genomic regions on chromosome 1 containing several ZNF repeat genes and in a genomic region surrounding the KCNQ1 imprinting control gene on chromosome 11 (figure 3A and B, respectively).</small></p> </div> </div> <div class="row"> <div class="small-6 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410193-Elisa-Fig4.png" /></center></div> <div class="small-6 columns"> <p><small><strong>Figure 4. Determination of the antibody titer</strong><br />To determine the titer of the antibody, an ELISA was performed using a serial dilution of the antibody directed against human H3K9me3 (cat. No. C15410193) in antigen coated wells. The antigen used was a peptide containing the histone modification of interest. By plotting the absorbance against the antibody dilution (Figure 4), the titer of the antibody was estimated to be 1:87,000.</small></p> </div> </div> <div class="row"> <div class="small-4 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410193-DB-Fig5.png" /></center></div> <div class="small-8 columns"> <p><small><strong>Figure 5. Cross reactivity tests using the Diagenode antibody directed against H3K9me3</strong><br />A Dot Blot analysis was performed to test the cross reactivity of the Diagenode antibody against H3K9me3 (cat. No. C15410193) with peptides containing other modifications and unmodified sequences of histone H3 and H4. One hundred to 0.2 pmol of the peptide containing the respective histone modification were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 5 shows a high specificity of the antibody for the modification of interest.</small></p> </div> </div> <div class="row"> <div class="small-4 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410193-WB-Fig6.png" /></center></div> <div class="small-8 columns"> <p><small><strong>Figure 6. Western blot analysis using the Diagenode antibody directed against H3K9me3</strong><br />Western blot was performed on whole cell (25 µg, lane 1) and histone extracts (15 µg, lane 2) from HeLa cells, and on 1 µg of recombinant histone H2A, H2B, H3 and H4 (lane 3, 4, 5 and 6, respectively) using the Diagenode antibody against H3K9me3 (cat. No. C15410193). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right; the marker (in kDa) is shown on the left.</small></p> </div> </div> <div class="row"> <div class="small-12 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410193-IF-Fig7.png" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 7. Immunofluorescence using the Diagenode antibody directed against H3K9me3</strong><br />HeLa cells were stained with the Diagenode antibody against H3K9me3 (cat. No. C15410193) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labelled with the H3K9me3 antibody (middle) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The left panel shows staining of the nuclei with DAPI. A merge of both stainings is shown on the right.</small></p> </div> </div>', 'label2' => 'Target Description', 'info2' => '<p>Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Trimethylation of histone H3K9 is associated with inactive genomic regions, satellite repeats and ZNF gene repeats.</p>', 'label3' => '', 'info3' => '', 'format' => '50 μg', 'catalog_number' => 'C15410193', 'old_catalog_number' => 'pAb-193-050', 'sf_code' => 'C15410193-D001-000581', 'type' => 'FRE', 'search_order' => '03-Antibody', 'price_EUR' => '460', 'price_USD' => '450', 'price_GBP' => '410', 'price_JPY' => '67700', 'price_CNY' => '0', 'price_AUD' => '1125', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => 'December 12, 2017', 'slug' => 'h3k9me3-polyclonal-antibody-premium-50-mg', 'meta_title' => 'H3K9me3 Antibody - ChIP-seq Grade (C15410193) | Diagenode', 'meta_keywords' => '', 'meta_description' => 'H3K9me3 (Histone H3 trimethylated at lysine 9) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, CUT&Tag, ELISA, DB, WB and IF. Specificity confirmed by Peptide array assay. Batch-specific data available on the website. Sample size available.', 'modified' => '2021-10-20 09:55:53', 'created' => '2015-06-29 14:08:20', 'ProductsRelated' => array( [maximum depth reached] ), 'Image' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '2268', 'antibody_id' => '70', 'name' => 'H3K27me3 Antibody', 'description' => '<p>Polyclonal antibody raised in rabbit against the region of histone <strong>H3 containing the trimethylated lysine 27</strong> (<strong>H3K27me3</strong>), using a KLH-conjugated synthetic peptide.</p>', 'label1' => 'Validation Data', 'info1' => '<div class="row"> <div class="small-6 columns"> <p>A. <img src="https://www.diagenode.com/img/product/antibodies/C15410195-ChIP-Fig1.png" alt="H3K27me3 Antibody ChIP Grade" /></p> <p>B. <img src="https://www.diagenode.com/img/product/antibodies/C15410195-ChIP-Fig2.png" alt="H3K27me3 Antibody for ChIP" /></p> </div> <div class="small-6 columns"> <p><small><strong>Figure 1. ChIP results obtained with the Diagenode antibody directed against H3K27me3</strong><br />ChIP assays were performed using human HeLa cells, the Diagenode antibody against H3K27me3 (Cat. No. C15410195) and optimized PCR primer pairs for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. C01010051), using sheared chromatin from 1 million cells. The chromatin was spiked with a panel of in vitro assembled nucleosomes, each containing a specific lysine methylation. A titration consisting of 0.5, 1, 2 and 5 µg of antibody per ChIP experiment was analyzed. IgG (1 µg/IP) was used as a negative IP control.</small></p> <p><small><strong>Figure 1A.</strong> Quantitative PCR was performed with primers specific for the promoter of the active GAPDH and EIF4A2 genes, used as negative controls, and for the inactive TSH2B and MYT1 genes, used as positive controls. The graph shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis).</small></p> <p><small><strong>Figure 1B.</strong> Recovery of the nucleosomes carrying the H3K27me1, H3K27me2, H3K27me3, H3K4me3, H3K9me3 and H3K36me3 modifications and the unmodified H3K27 as determined by qPCR. The figure clearly shows the antibody is very specific in ChIP for the H3K27me3 modification.</small></p> </div> </div> <div class="row"> <div class="small-12 columns"> <p>A. <img src="https://www.diagenode.com/img/product/antibodies/C15410195-ChIP-Fig2a.png" alt="H3K27me3 Antibody ChIP-seq Grade" /></p> </div> </div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="row"> <div class="small-12 columns"> <p>B. <img src="https://www.diagenode.com/img/product/antibodies/C15410195-ChIP-Fig2b.png" alt="H3K27me3 Antibody for ChIP-seq" /></p> <p>C. <img src="https://www.diagenode.com/img/product/antibodies/C15410195-ChIP-Fig2c.png" alt="H3K27me3 Antibody for ChIP-seq assay" /></p> <p>D. <img src="https://www.diagenode.com/img/product/antibodies/C15410195-ChIP-Fig2d.png" alt="H3K27me3 Antibody validated in ChIP-seq" /></p> </div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H3K27me3</strong><br />ChIP was performed on sheared chromatin from 1 million HeLa cells using 1 µg of the Diagenode antibody against H3K27me3 (Cat. No. C15410195) as described above. The IP'd DNA was subsequently analysed on an Illumina HiSeq. Library preparation, cluster generation and sequencing were performed according to the manufacturer's instructions. The 50 bp tags were aligned to the human genome using the BWA algorithm. Figure 2 shows the enrichment in genomic regions of chromosome 6 and 20, surrounding the TSH2B and MYT1 positive control genes (fig 2A and 2B, respectively), and in two genomic regions of chromosome 1 and X (figure 2C and D).</small></p> </div> </div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="row"> <div class="small-12 columns"> <p>A. <img src="https://www.diagenode.com/img/product/antibodies/C15410195-CUTTAG-Fig3A.png" /></p> <p>B. <img src="https://www.diagenode.com/img/product/antibodies/C15410195-CUTTAG-Fig3B.png" /></p> </div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 3. Cut&Tag results obtained with the Diagenode antibody directed against H3K27me3</strong><br />CUT&TAG (Kaya-Okur, H.S., Nat Commun 10, 1930, 2019) was performed on 50,000 K562 cells using 1 µg of the Diagenode antibody against H3K27me3 (cat. No. C15410195) and the Diagenode pA-Tn5 transposase (C01070001). The libraries were subsequently analysed on an Illumina NextSeq 500 sequencer (2x75 paired-end reads) according to the manufacturer's instructions. The tags were aligned to the human genome (hg19) using the BWA algorithm. Figure 3 shows the peak distribution in 2 genomic regions on chromosome and 13 and 20 (figure 3A and B, respectively).</small></p> </div> </div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="row"> <div class="small-6 columns"> <p><img src="https://www.diagenode.com/img/product/antibodies/C15410195-ELISA-Fig4.png" alt="H3K27me3 Antibody ELISA Validation " /></p> </div> <div class="small-6 columns"> <p><small><strong>Figure 4. Determination of the antibody titer</strong><br />To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody directed against H3K27me3 (Cat. No. C15410195). The antigen used was a peptide containing the histone modification of interest. By plotting the absorbance against the antibody dilution (Figure 4), the titer of the antibody was estimated to be 1:3,000.</small></p> </div> </div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="row"> <div class="small-6 columns"> <p><img src="https://www.diagenode.com/img/product/antibodies/C15410195-DB-Fig5a.png" alt="H3K27me3 Antibody Dot Blot Validation " /></p> </div> <div class="small-6 columns"> <p><small><strong>Figure 5. Cross reactivity tests using the Diagenode antibody directed against H3K27me3</strong><br />A Dot Blot analysis was performed to test the cross reactivity of the Diagenode antibody against H3K27me3 (Cat. No. C15410195) with peptides containing other modifications of histone H3 and H4 and the unmodified H3K27 sequence. One hundred to 0.2 pmol of the peptide containing the respective histone modification were spotted on a membrane. The antibody was used at a dilution of 1:5,000. Figure 5 shows a high specificity of the antibody for the modification of interest. Please note that the antibody also recognizes the modification if S28 is phosphorylated.</small></p> </div> </div> <div class="row"> <div class="small-6 columns"> <p><img src="https://www.diagenode.com/img/product/antibodies/C15410195-WB-Fig6.png" alt="H3K27me3 Antibody validated in Western Blot" /></p> </div> <div class="small-6 columns"> <p><small><strong>Figure 6. Western blot analysis using the Diagenode antibody directed against H3K27me3</strong><br />Western blot was performed on whole cell (25 µg, lane 1) and histone extracts (15 µg, lane 2) from HeLa cells, and on 1 µg of recombinant histone H2A, H2B, H3 and H4 (lane 3, 4, 5 and 6, respectively) using the Diagenode antibody against H3K27me3 (cat. No. C15410195) diluted 1:500 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right; the marker (in kDa) is shown on the left.</small></p> </div> </div> <div class="row"> <div class="small-12 columns"> <p><img src="https://www.diagenode.com/img/product/antibodies/C15410195-IF-Fig7.png" alt="H3K27me3 Antibody validated for Immunofluorescence" /></p> </div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 7. Immunofluorescence using the Diagenode antibody directed against H3K27me3</strong><br />Human HeLa cells were stained with the Diagenode antibody against H3K27me3 (Cat. No. C15410195) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labelled with the H3K27me3 antibody (left) diluted 1:200 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right.</small></p> </div> </div>', 'label2' => 'Target Description', 'info2' => '<p><small>Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which alter chromatin structure to facilitate transcriptional activation, repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is regulated by histone methyl transferases and histone demethylases. Methylation of histone H3K27 is associated with inactive genomic regions.</small></p>', 'label3' => '', 'info3' => '', 'format' => '50 μg', 'catalog_number' => 'C15410195', 'old_catalog_number' => 'pAb-195-050', 'sf_code' => 'C15410195-D001-000581', 'type' => 'FRE', 'search_order' => '03-Antibody', 'price_EUR' => '460', 'price_USD' => '450', 'price_GBP' => '410', 'price_JPY' => '67700', 'price_CNY' => '', 'price_AUD' => '1125', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => 'January 14, 2021', 'slug' => 'h3k27me3-polyclonal-antibody-premium-50-mg-27-ml', 'meta_title' => 'H3K27me3 Antibody - ChIP-seq Grade (C15410195) | Diagenode', 'meta_keywords' => '', 'meta_description' => 'H3K27me3 (Histone H3 trimethylated at lysine 27) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, CUT&Tag, ELISA, DB, WB and IF. Specificity confirmed by Peptide array assay. Batch-specific data available on the website. Sample size available.', 'modified' => '2021-10-20 09:57:53', 'created' => '2015-06-29 14:08:20', 'ProductsRelated' => array( [maximum depth reached] ), 'Image' => array( [maximum depth reached] ) ), (int) 5 => array( 'id' => '2270', 'antibody_id' => '109', 'name' => 'H3K27ac Antibody', 'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone <strong>H3 containing the acetylated lysine 27</strong> (<strong>H3K27ac</strong>), using a KLH-conjugated synthetic peptide.</span></p>', 'label1' => 'Validation Data', 'info1' => '<div class="row"> <div class="small-6 columns">A.<img src="https://www.diagenode.com/img/product/antibodies/C15410196-ChIP-Fig1a.png" width="356" /><br /> B.<img src="https://www.diagenode.com/img/product/antibodies/C15410196-ChIP-Fig1b.png" width="356" /></div> <div class="small-6 columns"> <p><strong>Figure 1. ChIP results obtained with the Diagenode antibody directed against H3K27ac</strong></p> <p>Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H3K27ac (Cat. No. C15410196) and optimized PCR primer pairs for qPCR. ChIP was performed with the “Auto Histone ChIP-seq” kit on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 µg of antibody per ChIP experiment was analyzed. IgG (2 µg/IP) was used as a negative IP control. Quantitative PCR was performed with primers for the promoters of the active EIF4A2 and ACTB genes, used as positive controls, and for the inactive TSH2B and MYT1 genes, used as negative controls.</p> <p>Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H3K27ac (Cat. No. C15410196)and optimized PCR primer pairs for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. C01010051), using sheared chromatin from 100,000 cells. A titration consisting of 0.2, 0.5, 1 and 2 µg of antibody per ChIP experiment was analyzed. IgG (1 µg/IP) was used as a negative IP control. Quantitative PCR was performed with primers for the promoters of the active GAPDH and EIF4A2 genes, used as positive controls, and for the coding regions of the inactive MB and MYT1 genes, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis)</p> </div> </div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="row"> <div class="small-12 columns"><center> <p>A.<img src="https://www.diagenode.com/img/product/antibodies/C15410196-ChIP-Fig2a.png" /></p> </center><center> <p>B.<img src="https://www.diagenode.com/img/product/antibodies/C15410196-ChIP-Fig2b.png" /></p> </center><center> <p>C.<img src="https://www.diagenode.com/img/product/antibodies/C15410196-ChIP-Fig2c.png" /></p> </center></div> </div> <div class="row"> <div class="small-12 columns"> <p><strong>Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H3K27ac</strong></p> <p>ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 µg of the Diagenode antibody against H3K27ac (Cat. No. C15410196<span class="label-primary"></span>) as described above. The IP’d DNA was subsequently analysed on an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2A shows the peak distribution along the complete human X-chromosome. Figure 2 B and C show the peak distribution in two regions surrounding the EIF4A2 and GAPDH positive control genes, respectively. The position of the PCR amplicon, used for validating the ChIP assay is indicated with an arrow.</p> </div> </div> <div class="row"> <div class="small-12 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410196-fig3.jpg" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><strong>Figure 3. Cut&Tag results obtained with the Diagenode antibody directed against H3K27ac</strong></p> <p>CUT&TAG (Kaya-Okur, H.S., Nat Commun 10, 1930, 2019) was performed on 50,000 K562 cells using 1 µg of the Diagenode antibody against H3K27ac (cat. No. C15410196) and the Diagenode pA-Tn5 transposase (C01070001). The libraries were subsequently analysed on an Illumina NextSeq 500 sequencer (2x75 paired-end reads) according to the manufacturer's instructions. The tags were aligned to the human genome (hg19) using the BWA algorithm. Figure 3 shows the peak distribution in 2 genomic regions surrounding the EIF2S3 gene on the X-chromosome and the CCT5 gene on chromosome 5 (figure 3A and B, respectively).</p> </div> </div> <div class="row"> <div class="small-6 columns"><img src="https://www.diagenode.com/img/product/antibodies/C15410196-ELISA-Fig3.png" /></div> <div class="small-6 columns"> <p><strong>Figure 4. Determination of the antibody titer</strong></p> <p>To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H3K27ac (Cat. No. C15410196<span class="label-primary"></span>). The antigen used was a peptide containing the histone modification of interest. By plotting the absorbance against the antibody dilution (Figure 4), the titer of the antibody was estimated to be 1:8,300.</p> </div> </div> <div class="row"> <div class="small-4 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410196-DB-Fig4.png" /></center></div> <div class="small-8 columns"> <p><strong>Figure 5. Cross reactivity tests using the Diagenode antibody directed against H3K27ac</strong><br />To test the cross reactivity of the Diagenode antibody against H3K27ac (Cat. No. C15410196<span class="label-primary"></span>), a Dot Blot analysis was performed with peptides containing other histone modifications and the unmodified H3K27. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 5 shows a high specificity of the antibody for the modification of interest.</p> </div> </div> <div class="row"> <div class="small-4 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410196-WB-Fig5.png" /></center></div> <div class="small-8 columns"> <p><strong>Figure 6. Western blot analysis using the Diagenode antibody directed against H3K27ac</strong><br />Western blot was performed on whole cell (25 µg, lane 1) and histone extracts (15 µg, lane 2) from HeLa cells, and on 1 µg of recombinant histone H2A, H2B, H3 and H4 (lane 3, 4, 5 and 6, respectively) using the Diagenode antibody against H3K27ac (Cat. No. C1541196). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The marker (in kDa) is shown on the left.</p> </div> </div> <div class="row"> <div class="small-4 columns"><img src="https://www.diagenode.com/img/product/antibodies/C15410196-IF-Fig6.png" /></div> <div class="small-8 columns"> <p><strong>Figure 7. Immunofluorescence using the Diagenode antibody directed against H3K27ac</strong></p> <p>HeLa cells were stained with the Diagenode antibody against H3K27ac (Cat. No. C15410196<span class="label-primary"></span>) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/ TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H3K27ac antibody (top) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown at the bottom.</p> </div> </div>', 'label2' => 'Target Description', 'info2' => '<p style="text-align: justify;">Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of histone H3K27 is associated with active promoters and enhancers.</p>', 'label3' => '', 'info3' => '', 'format' => '50 μg', 'catalog_number' => 'C15410196', 'old_catalog_number' => 'pAb-196-050', 'sf_code' => 'C15410196-D001-000581', 'type' => 'FRE', 'search_order' => '03-Antibody', 'price_EUR' => '460', 'price_USD' => '450', 'price_GBP' => '410', 'price_JPY' => '67700', 'price_CNY' => '', 'price_AUD' => '1125', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => 'January 11, 2021', 'slug' => 'h3k27ac-polyclonal-antibody-premium-50-mg-18-ml', 'meta_title' => 'H3K27ac Antibody - ChIP-seq Grade (C15410196) | Diagenode', 'meta_keywords' => '', 'meta_description' => 'H3K27ac (Histone H3 acetylated at lysine 27) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, CUT&Tag, ELISA, DB, WB and IF. Batch-specific data available on the website. Sample size available. ', 'modified' => '2021-10-20 10:28:57', 'created' => '2015-06-29 14:08:20', 'ProductsRelated' => array( [maximum depth reached] ), 'Image' => array( [maximum depth reached] ) ) ), 'Application' => array( (int) 0 => array( 'id' => '10', 'position' => '10', 'parent_id' => '2', 'name' => 'ChIP-qPCR', 'description' => '<div class="row"> <div class="small-12 medium-12 large-12 columns text-justify"> <p class="text-justify">Chromatin Immunoprecipitation (ChIP) coupled with quantitative PCR can be used to investigate protein-DNA interaction at known genomic binding sites. if sites are not known, qPCR primers can also be designed against potential regulatory regions such as promoters. ChIP-qPCR is advantageous in studies that focus on specific genes and potential regulatory regions across differing experimental conditions as the cost of performing real-time PCR is minimal. This technique is now used in a variety of life science disciplines including cellular differentiation, tumor suppressor gene silencing, and the effect of histone modifications on gene expression.</p> <p class="text-justify"><strong>The ChIP-qPCR workflow</strong></p> </div> <div class="small-12 medium-12 large-12 columns text-center"><br /> <img src="https://www.diagenode.com/img/chip-qpcr-diagram.png" /></div> <div class="small-12 medium-12 large-12 columns"><br /> <ol> <li class="large-12 columns"><strong>Chromatin preparation: </strong>cell fixation (cross-linking) of chromatin-bound proteins such as histones or transcription factors to DNA followed by cell lysis.</li> <li class="large-12 columns"><strong>Chromatin shearing: </strong>fragmentation of chromatin<strong> </strong>by sonication down to desired fragment size (100-500 bp)</li> <li class="large-12 columns"><strong>Chromatin IP</strong>: protein-DNA complexe capture using<strong> <a href="https://www.diagenode.com/en/categories/chip-grade-antibodies">specific ChIP-grade antibodies</a></strong> against the histone or transcription factor of interest</li> <li class="large-12 columns"><strong>DNA purification</strong>: chromatin reverse cross-linking and elution followed by purification<strong> </strong></li> <li class="large-12 columns"><strong>qPCR and analysis</strong>: using previously designed primers to amplify IP'd material at specific loci</li> </ol> </div> </div> <div class="row" style="margin-top: 32px;"> <div class="small-12 medium-10 large-9 small-centered columns"> <div class="radius panel" style="background-color: #fff;"> <h3 class="text-center" style="color: #b21329;">Need guidance?</h3> <p class="text-justify">Choose our full ChIP kits or simply choose what you need from antibodies, buffers, beads, chromatin shearing and purification reagents. With the ChIP Kit Customizer, you have complete flexibility on which components you want from our validated ChIP kits.</p> <div class="row"> <div class="small-6 medium-6 large-6 columns"><a href="https://www.diagenode.com/pages/which-kit-to-choose"><img src="https://www.diagenode.com/img/banners/banner-decide.png" alt="" /></a></div> <div class="small-6 medium-6 large-6 columns"><a href="https://www.diagenode.com/pages/chip-kit-customizer-1"><img src="https://www.diagenode.com/img/banners/banner-customizer.png" alt="" /></a></div> </div> </div> </div> </div>', 'in_footer' => false, 'in_menu' => true, 'online' => true, 'tabular' => true, 'slug' => 'chip-qpcr', 'meta_keywords' => 'Chromatin immunoprecipitation,ChIP Quantitative PCR,polymerase chain reaction (PCR)', 'meta_description' => 'Diagenode's ChIP qPCR kits can be used to quantify enriched DNA after chromatin immunoprecipitation. ChIP-qPCR is advantageous in studies that focus on specific genes and potential regulatory regions across differing experimental conditions as the cost of', 'meta_title' => 'ChIP Quantitative PCR (ChIP-qPCR) | Diagenode', 'modified' => '2018-01-09 16:46:56', 'created' => '2014-12-11 00:22:08', 'ProductsApplication' => array( [maximum depth reached] ) ) ), 'Category' => array( (int) 0 => array( 'id' => '119', 'position' => '3', 'parent_id' => '59', 'name' => 'Older generation kits', 'description' => '', 'no_promo' => false, 'in_menu' => false, 'online' => true, 'tabular' => true, 'hide' => false, 'all_format' => false, 'is_antibody' => false, 'slug' => 'chromatin-ip-older-generation-kits', 'cookies_tag_id' => null, 'meta_keywords' => '', 'meta_description' => '', 'meta_title' => '', 'modified' => '2017-06-16 12:04:39', 'created' => '2016-07-19 17:00:05', 'ProductsCategory' => array( [maximum depth reached] ), 'CookiesTag' => array([maximum depth reached]) ) ), 'Document' => array( (int) 0 => array( 'id' => '92', 'name' => 'LowCell# ChIP kit', 'description' => '<div class="page" title="Page 4"> <div class="section"> <div class="layoutArea"> <div class="column"> <p><span>Diagenode provides kits with optimized reagents and simplified protocols for ChIP including the LowCell# ChIP Kit, <a href="https://www.diagenode.com/en/p/ideal-chip-qpcr-kit">iDeal ChIP-qPCR kit</a>, <a href="https://www.diagenode.com/en/p/ideal-chip-ffpe-kit">iDeal ChIP FFPE kit</a>, <a href="https://www.diagenode.com/en/categories/chromatin-ip-chip-seq-kits">iDeal ChIP-seq kits</a>, <a href="https://www.diagenode.com/en/p/true-microchip-kit-x16-16-rxns">True MicroChIP kit</a>, <a href="https://www.diagenode.com/en/p/universal-plant-chip-seq-kit-x24-24-rxns">Universal Plant ChIP-seq kit </a>and <a href="https://www.diagenode.com/en/categories/chromatin-ip-chipmentation">the ChIPmentation for Histones</a>. This protocol describes the use of the LowCell# ChIP Kit.</span></p> </div> </div> </div> </div>', 'image_id' => null, 'type' => 'Manual', 'url' => 'files/products/kits/LowCell-chip-kit-manual.pdf', 'slug' => 'lowcell-chip-kit-manual', 'meta_keywords' => '', 'meta_description' => '', 'modified' => '2019-05-17 11:30:59', 'created' => '2015-07-07 11:47:43', 'ProductsDocument' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '37', 'name' => 'Chromatin Brochure', 'description' => '<p>Whether you are experienced or new to the field of chromatin immunoprecipitation, Diagenode has everything you need to make ChIP easy and convenient while ensuring consistent data between samples and experiments. As an expert in the field of epigenetics, Diagenode is committed to providing complete solutions from chromatin shearing reagents, shearing instruments such as the Bioruptor® (the gold standard for chromatin shearing), ChIP kits, the largest number of validated and trusted antibodies on the market, and the SX-8G IP-Star® Compact Automated System to achieve unparalleled productivity and reproducibility.</p>', 'image_id' => null, 'type' => 'Brochure', 'url' => 'files/brochures/Chromatin_Immunoprecipitation_Brochure.pdf', 'slug' => 'chromatin-immunoprecipitation-brochure', 'meta_keywords' => '', 'meta_description' => '', 'modified' => '2022-03-24 12:34:11', 'created' => '2015-07-03 16:05:27', 'ProductsDocument' => array( [maximum depth reached] ) ) ), 'Feature' => array(), 'Image' => array( (int) 0 => array( 'id' => '1775', 'name' => 'product/kits/chip-kit-icon.png', 'alt' => 'ChIP kit icon', 'modified' => '2018-04-17 11:52:29', 'created' => '2018-03-15 15:50:34', 'ProductsImage' => array( [maximum depth reached] ) ) ), 'Promotion' => array(), 'Protocol' => array(), 'Publication' => array( (int) 0 => array( 'id' => '3853', 'name' => 'Heterochromatin protein 1γ deficiency decreases histone H3K27 methylation in mouse neurosphere neuronal genes.', 'authors' => 'Naruse C, Abe K, Yoshihara T, Kato T, Nishiuchi T, Asano M', 'description' => '<p>Heterochromatin protein (HP) 1γ, a component of heterochromatin in eukaryotes, is involved in H3K9 methylation. Although HP1γ is expressed strongly in neural tissues and neural stem cells, its functions are unclear. To elucidate the roles of HP1γ, we analyzed HP1γ -deficient (HP1γ KO) mouse embryonic neurospheres and determined that HP1γ KO neurospheres tended to differentiate after quaternary culture. Several genes normally expressed in neuronal cells were upregulated in HP1γ KO undifferentiated neurospheres, but not in the wild type (WT). Compared to that in the control neurospheres, the occupancy of H3K27me3 was lower around the transcription start sites (TSSs) of these genes in HP1γ KO neurospheres, while H3K9me2/3, H3K4me3, and H3K27ac amounts remained unchanged. Moreover, amounts of the H3K27me2/3 demethylases, UTX, and JMJD3, were increased around the TSSs of these genes. Treatment with GSK-J4, an inhibitor of H3K27 demethylases, decreased the expression of genes upregulated in HP1γ KO neurospheres, along with an increase of H3K27me3 amounts. Therefore, in murine neurospheres, HP1γ protected the promoter sites of differentiated cell-specific genes against H3K27 demethylases to repress the expression of these genes. A better understanding of central cellular processes such as histone methylation will help elucidate critical events such as cell-specific gene expression, epigenetics, and differentiation.</p>', 'date' => '2020-01-21', 'pmid' => 'http://www.pubmed.gov/31961023', 'doi' => '10.1096/fj.201900139R', 'modified' => '2020-03-20 18:00:54', 'created' => '2020-03-13 13:45:54', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '3833', 'name' => 'SIRT1/2 orchestrate acquisition of DNA methylation and loss of histone H3 activating marks to prevent premature activation of inflammatory genes in macrophages.', 'authors' => 'Li T, Garcia-Gomez A, Morante-Palacios O, Ciudad L, Özkaramehmet S, Van Dijck E, Rodríguez-Ubreva J, Vaquero A, Ballestar E', 'description' => '<p>Sirtuins 1 and 2 (SIRT1/2) are two NAD-dependent deacetylases with major roles in inflammation. In addition to deacetylating histones and other proteins, SIRT1/2-mediated regulation is coupled with other epigenetic enzymes. Here, we investigate the links between SIRT1/2 activity and DNA methylation in macrophage differentiation due to their relevance in myeloid cells. SIRT1/2 display drastic upregulation during macrophage differentiation and their inhibition impacts the expression of many inflammation-related genes. In this context, SIRT1/2 inhibition abrogates DNA methylation gains, but does not affect demethylation. Inhibition of hypermethylation occurs at many inflammatory loci, which results in more drastic upregulation of their expression upon macrophage polarization following bacterial lipopolysaccharide (LPS) challenge. SIRT1/2-mediated gains of methylation concur with decreases in activating histone marks, and their inhibition revert these histone marks to resemble an open chromatin. Remarkably, specific inhibition of DNA methyltransferases is sufficient to upregulate inflammatory genes that are maintained in a silent state by SIRT1/2. Both SIRT1 and SIRT2 directly interact with DNMT3B, and their binding to proinflammatory genes is lost upon exposure to LPS or through pharmacological inhibition of their activity. In all, we describe a novel role for SIRT1/2 to restrict premature activation of proinflammatory genes.</p>', 'date' => '2019-12-04', 'pmid' => 'http://www.pubmed.gov/31799621', 'doi' => '10.1093/nar/gkz1127', 'modified' => '2020-02-25 13:27:46', 'created' => '2020-02-13 10:02:44', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '3796', 'name' => 'Identification and Massively Parallel Characterization of Regulatory Elements Driving Neural Induction', 'authors' => 'Inoue Fumitaka, Kreimer Anat, Ashuach Tal, Ahituv Nadav, Yosef Nir', 'description' => '<p>Epigenomic regulation and lineage-specific gene expression act in concert to drive cellular differentiation, but the temporal interplay between these processes is largely unknown. Using neural induction from human pluripotent stem cells (hPSCs) as a paradigm, we interrogated these dynamics by performing RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), and assay for transposase accessible chromatin using sequencing (ATAC-seq) at seven time points during early neural differentiation. We found that changes in DNA accessibility precede H3K27ac, which is followed by gene expression changes. Using massively parallel reporter assays (MPRAs) to test the activity of 2,464 candidate regulatory sequences at all seven time points, we show that many of these sequences have temporal activity patterns that correlate with their respective cell-endogenous gene expression and chromatin changes. A prioritization method incorporating all genomic and MPRA data further identified key transcription factors involved in driving neural fate. These results provide a comprehensive resource of genes and regulatory elements that orchestrate neural induction and illuminate temporal frameworks during differentiation.</p>', 'date' => '2019-11-07', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pubmed/31631012', 'doi' => '10.1016/j.stem.2019.09.010', 'modified' => '2019-12-05 11:36:36', 'created' => '2019-12-02 15:25:44', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '3807', 'name' => 'Epigenetic remodelling licences adult cholangiocytes for organoid formation and liver regeneration.', 'authors' => 'Aloia L, McKie MA, Vernaz G, Cordero-Espinoza L, Aleksieva N, van den Ameele J, Antonica F, Font-Cunill B, Raven A, Aiese Cigliano R, Belenguer G, Mort RL, Brand AH, Zernicka-Goetz M, Forbes SJ, Miska EA, Huch M', 'description' => '<p>Following severe or chronic liver injury, adult ductal cells (cholangiocytes) contribute to regeneration by restoring both hepatocytes and cholangiocytes. We recently showed that ductal cells clonally expand as self-renewing liver organoids that retain their differentiation capacity into both hepatocytes and ductal cells. However, the molecular mechanisms by which adult ductal-committed cells acquire cellular plasticity, initiate organoids and regenerate the damaged tissue remain largely unknown. Here, we describe that ductal cells undergo a transient, genome-wide, remodelling of their transcriptome and epigenome during organoid initiation and in vivo following tissue damage. TET1-mediated hydroxymethylation licences differentiated ductal cells to initiate organoids and activate the regenerative programme through the transcriptional regulation of stem-cell genes and regenerative pathways including the YAP-Hippo signalling. Our results argue in favour of the remodelling of genomic methylome/hydroxymethylome landscapes as a general mechanism by which differentiated cells exit a committed state in response to tissue damage.</p>', 'date' => '2019-11-04', 'pmid' => 'http://www.pubmed.gov/31685987', 'doi' => '10.1038/s41556-019-0402-6', 'modified' => '2019-12-05 11:19:34', 'created' => '2019-12-02 15:25:44', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '3630', 'name' => 'Hyper-Editing of Cell-Cycle Regulatory and Tumor Suppressor RNA Promotes Malignant Progenitor Propagation.', 'authors' => 'Jiang Q, Isquith J, Zipeto MA, Diep RH, Pham J, Delos Santos N, Reynoso E, Chau J, Leu H, Lazzari E, Melese E, Ma W, Fang R, Minden M, Morris S, Ren B, Pineda G, Holm F, Jamieson C', 'description' => '<p>Adenosine deaminase associated with RNA1 (ADAR1) deregulation contributes to therapeutic resistance in many malignancies. Here we show that ADAR1-induced hyper-editing in normal human hematopoietic progenitors impairs miR-26a maturation, which represses CDKN1A expression indirectly via EZH2, thereby accelerating cell-cycle transit. However, in blast crisis chronic myeloid leukemia progenitors, loss of EZH2 expression and increased CDKN1A oppose cell-cycle transit. Moreover, A-to-I editing of both the MDM2 regulatory microRNA and its binding site within the 3' UTR region stabilizes MDM2 transcripts, thereby enhancing blast crisis progenitor propagation. These data reveal a dual mechanism governing malignant transformation of progenitors that is predicated on hyper-editing of cell-cycle-regulatory miRNAs and the 3' UTR binding site of tumor suppressor miRNAs.</p>', 'date' => '2019-01-14', 'pmid' => 'http://www.pubmed.gov/30612940', 'doi' => '10.1016/j.ccell.2018.11.017', 'modified' => '2019-05-08 12:25:16', 'created' => '2019-04-25 11:11:44', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 5 => array( 'id' => '3566', 'name' => 'Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes.', 'authors' => 'Ferguson GB, Van Handel B, Bay M, Fiziev P, Org T, Lee S, Shkhyan R, Banks NW, Scheinberg M, Wu L, Saitta B, Elphingstone J, Larson AN, Riester SM, Pyle AD, Bernthal NM, Mikkola HK, Ernst J, van Wijnen AJ, Bonaguidi M, Evseenko D', 'description' => '<p>Tissue-specific gene expression defines cellular identity and function, but knowledge of early human development is limited, hampering application of cell-based therapies. Here we profiled 5 distinct cell types at a single fetal stage, as well as chondrocytes at 4 stages in vivo and 2 stages during in vitro differentiation. Network analysis delineated five tissue-specific gene modules; these modules and chromatin state analysis defined broad similarities in gene expression during cartilage specification and maturation in vitro and in vivo, including early expression and progressive silencing of muscle- and bone-specific genes. Finally, ontogenetic analysis of freshly isolated and pluripotent stem cell-derived articular chondrocytes identified that integrin alpha 4 defines 2 subsets of functionally and molecularly distinct chondrocytes characterized by their gene expression, osteochondral potential in vitro and proliferative signature in vivo. These analyses provide new insight into human musculoskeletal development and provide an essential comparative resource for disease modeling and regenerative medicine.</p>', 'date' => '2018-09-07', 'pmid' => 'http://www.pubmed.gov/30194383', 'doi' => '10.1038/s41467-018-05573-y', 'modified' => '2019-03-25 11:14:45', 'created' => '2019-03-21 14:12:08', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '3624', 'name' => 'The transcription factor Lef1 switches partners from β-catenin to Smad3 during muscle stem cell quiescence.', 'authors' => 'Aloysius A, DasGupta R, Dhawan J', 'description' => '<p>Skeletal muscle stem cells (MuSCs), also known as satellite cells, persist in adult mammals by entering a state of quiescence (G) during the early postnatal period. Quiescence is reversed during damage-induced regeneration and re-established after regeneration. Entry of cultured myoblasts into G is associated with a specific, reversible induction of Wnt target genes, thus implicating members of the Tcf and Lef1 (Tcf/Lef) transcription factor family, which mediate transcriptional responses to Wnt signaling, in the initiation of quiescence. We found that the canonical Wnt effector β-catenin, which cooperates with Tcf/Lef, was dispensable for myoblasts to enter quiescence. Using pharmacological and genetic approaches in cultured C2C12 myoblasts and in MuSCs, we demonstrated that Tcf/Lef activity during quiescence depended not on β-catenin but on the transforming growth factor-β (TGF-β) effector and transcriptional coactivator Smad3, which colocalized with Lef1 at canonical Wnt-responsive elements and directly interacted with Lef1 specifically in G Depletion of Smad3, but not β-catenin, reduced Lef1 occupancy at target promoters, Tcf/Lef target gene expression, and self-renewal of myoblasts. In vivo, MuSCs underwent a switch from β-catenin-Lef1 to Smad3-Lef1 interactions during the postnatal switch from proliferation to quiescence, with β-catenin-Lef1 interactions recurring during damage-induced reactivation. Our findings suggest that the interplay of Wnt-Tcf/Lef and TGF-β-Smad3 signaling activates canonical Wnt target promoters in a manner that depends on β-catenin during myoblast proliferation but is independent of β-catenin during MuSC quiescence.</p>', 'date' => '2018-07-24', 'pmid' => 'http://www.pubmed.gov/30042129', 'doi' => '10.1126/scisignal.aan3000', 'modified' => '2019-05-16 11:16:29', 'created' => '2019-04-25 11:11:44', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 7 => array( 'id' => '3625', 'name' => 'A LINE1-Nucleolin Partnership Regulates Early Development and ESC Identity.', 'authors' => 'Percharde M, Lin CJ, Yin Y, Guan J, Peixoto GA, Bulut-Karslioglu A, Biechele S, Huang B, Shen X, Ramalho-Santos M', 'description' => '<p>Transposable elements represent nearly half of mammalian genomes and are generally described as parasites, or "junk DNA." The LINE1 retrotransposon is the most abundant class and is thought to be deleterious for cells, yet it is paradoxically highly expressed during early development. Here, we report that LINE1 plays essential roles in mouse embryonic stem cells (ESCs) and pre-implantation embryos. In ESCs, LINE1 acts as a nuclear RNA scaffold that recruits Nucleolin and Kap1/Trim28 to repress Dux, the master activator of a transcriptional program specific to the 2-cell embryo. In parallel, LINE1 RNA mediates binding of Nucleolin and Kap1 to rDNA, promoting rRNA synthesis and ESC self-renewal. In embryos, LINE1 RNA is required for Dux silencing, synthesis of rRNA, and exit from the 2-cell stage. The results reveal an essential partnership between LINE1 RNA, Nucleolin, Kap1, and peri-nucleolar chromatin in the regulation of transcription, developmental potency, and ESC self-renewal.</p>', 'date' => '2018-07-12', 'pmid' => 'http://www.pubmed.gov/29937225', 'doi' => '10.1016/j.cell.2018.05.043', 'modified' => '2019-05-16 11:17:25', 'created' => '2019-04-25 11:11:44', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 8 => array( 'id' => '3465', 'name' => 'Whole-Genome Sequencing of Pharmacogenetic Drug Response in Racially Diverse Children with Asthma.', 'authors' => 'Mak ACY, White MJ, Eckalbar WL, Szpiech ZA, Oh SS, Pino-Yanes M, Hu D, Goddard P, Huntsman S, Galanter J, Wu AC, Himes BE, Germer S, Vogel JM, Bunting KL, Eng C, Salazar S, Keys KL, Liberto J, Nuckton TJ, Nguyen TA, Torgerson DG, Kwok PY, Levin AM, Celedó', 'description' => '<p>RATIONALE: Albuterol, a bronchodilator medication, is the first-line therapy for asthma worldwide. There are significant racial/ethnic differences in albuterol drug response. OBJECTIVES: To identify genetic variants important for bronchodilator drug response (BDR) in racially diverse children. METHODS: We performed the first whole-genome sequencing pharmacogenetics study from 1,441 children with asthma from the tails of the BDR distribution to identify genetic association with BDR. MEASUREMENTS AND MAIN RESULTS: We identified population-specific and shared genetic variants associated with BDR, including genome-wide significant (P < 3.53 × 10) and suggestive (P < 7.06 × 10) loci near genes previously associated with lung capacity (DNAH5), immunity (NFKB1 and PLCB1), and β-adrenergic signaling (ADAMTS3 and COX18). Functional analyses of the BDR-associated SNP in NFKB1 revealed potential regulatory function in bronchial smooth muscle cells. The SNP is also an expression quantitative trait locus for a neighboring gene, SLC39A8. The lack of other asthma study populations with BDR and whole-genome sequencing data on minority children makes it impossible to perform replication of our rare variant associations. Minority underrepresentation also poses significant challenges to identify age-matched and population-matched cohorts of sufficient sample size for replication of our common variant findings. CONCLUSIONS: The lack of minority data, despite a collaboration of eight universities and 13 individual laboratories, highlights the urgent need for a dedicated national effort to prioritize diversity in research. Our study expands the understanding of pharmacogenetic analyses in racially/ethnically diverse populations and advances the foundation for precision medicine in at-risk and understudied minority populations.</p>', 'date' => '2018-06-15', 'pmid' => 'http://www.pubmed.gov/29509491', 'doi' => '10.1164/rccm.201712-2529OC', 'modified' => '2019-02-15 20:55:23', 'created' => '2019-02-14 15:01:22', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 9 => array( 'id' => '3472', 'name' => 'Replication-coupled histone H3.1 deposition determines nucleosome composition and heterochromatin dynamics during Arabidopsis seedling development.', 'authors' => 'Benoit M, Simon L, Desset S, Duc C, Cotterell S, Poulet A, Le Goff S, Tatout C, Probst AV', 'description' => '<p>Developmental phase transitions are often characterized by changes in the chromatin landscape and heterochromatin reorganization. In Arabidopsis, clustering of repetitive heterochromatic loci into so-called chromocenters is an important determinant of chromosome organization in nuclear space. Here, we investigated the molecular mechanisms involved in chromocenter formation during the switch from a heterotrophic to a photosynthetically competent state during early seedling development. We characterized the spatial organization and chromatin features at centromeric and pericentromeric repeats and identified mutant contexts with impaired chromocenter formation. We find that clustering of repetitive DNA loci into chromocenters takes place in a precise temporal window and results in reinforced transcriptional repression. Although repetitive sequences are enriched in H3K9me2 and linker histone H1 before repeat clustering, chromocenter formation involves increasing enrichment in H3.1 as well as H2A.W histone variants, hallmarks of heterochromatin. These processes are severely affected in mutants impaired in replication-coupled histone assembly mediated by CHROMATIN ASSEMBLY FACTOR 1 (CAF-1). We further reveal that histone deposition by CAF-1 is required for efficient H3K9me2 enrichment at repetitive sequences during chromocenter formation. Taken together, we show that chromocenter assembly during post-germination development requires dynamic changes in nucleosome composition and histone post-translational modifications orchestrated by the replication-coupled H3.1 deposition machinery.</p>', 'date' => '2018-06-13', 'pmid' => 'http://www.pubmed.gov/29897636', 'doi' => '10.1111/nph.15248', 'modified' => '2019-02-15 20:56:57', 'created' => '2019-02-14 15:01:22', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 10 => array( 'id' => '3534', 'name' => 'The Transcriptionally Permissive Chromatin State of Embryonic Stem Cells Is Acutely Tuned to Translational Output.', 'authors' => 'Bulut-Karslioglu A, Macrae TA, Oses-Prieto JA, Covarrubias S, Percharde M, Ku G, Diaz A, McManus MT, Burlingame AL, Ramalho-Santos M', 'description' => '<p>A permissive chromatin environment coupled to hypertranscription drives the rapid proliferation of embryonic stem cells (ESCs) and peri-implantation embryos. We carried out a genome-wide screen to systematically dissect the regulation of the euchromatic state of ESCs. The results revealed that cellular growth pathways, most prominently translation, perpetuate the euchromatic state and hypertranscription of ESCs. Acute inhibition of translation rapidly depletes euchromatic marks in mouse ESCs and blastocysts, concurrent with delocalization of RNA polymerase II and reduction in nascent transcription. Translation inhibition promotes rewiring of chromatin accessibility, which decreases at a subset of active developmental enhancers and increases at histone genes and transposable elements. Proteome-scale analyses revealed that several euchromatin regulators are unstable proteins and continuously depend on a high translational output. We propose that this mechanistic interdependence of euchromatin, transcription, and translation sets the pace of proliferation at peri-implantation and may be employed by other stem/progenitor cells.</p>', 'date' => '2018-03-01', 'pmid' => 'http://www.pubmed.gov/29499153', 'doi' => '10.1016/j.stem.2018.02.004', 'modified' => '2019-02-28 10:50:24', 'created' => '2019-02-27 12:54:44', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 11 => array( 'id' => '3363', 'name' => 'Oestrogen Receptor-α binds the FOXP3 promoter and modulates regulatory T-cell function in human cervical cancer', 'authors' => 'Adurthi S. et al.', 'description' => '<p>Oestrogen controls Foxp3 expression in regulatory T cells (T<sub>reg</sub> cells) via a mechanism thought to involve oestrogen receptor alpha (ERα), but the molecular basis and functional impact of ERα signalling in T<sub>reg</sub> cells remain unclear. We report that ERα ligand oestradiol (E2) is significantly increased in human cervical cancer (CxCa) tissues and tumour-infiltrating T<sub>reg</sub> cells (CD4<sup>+</sup>CD25<sup>hi</sup>CD127<sup>low</sup>), whereas blocking ERα with the antagonist ICI 182,780 abolishes FOXP3 expression and impairs the function of CxCa infiltrating T<sub>reg</sub> cells. Using a novel approach of co-immunoprecipitation with antibodies to E2 for capture, we identified binding of E2:ERα complexes to FOXP3 protein in CxCa-derived T<sub>reg</sub> cells. Chromatin immunoprecipitation analyses of male blood T<sub>reg</sub> cells revealed ERα occupancy at the FOXP3 promoter and conserved non-coding DNA elements 2 and 3. Accordingly, computational analyses of the enriched regions uncovered eight putative oestrogen response elements predicted to form a loop that can activate the FOXP3 promoter. Together, these data suggest that E2-mediated ERα signalling is critical for the sustenance of FOXP3 expression and T<sub>reg</sub> cell function in human CxCa via direct interaction of ERα with FOXP3 promoter. Overall, our work gives a molecular insight into ERα signalling and highlights a fundamental role of E2 in controlling human T<sub>reg</sub> cell physiology.</p>', 'date' => '2017-12-11', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pubmed/29229929', 'doi' => '', 'modified' => '2018-04-24 10:07:53', 'created' => '2018-04-24 10:07:53', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 12 => array( 'id' => '3292', 'name' => 'Distinguishing States of Arrest: Genome-Wide Descriptions of Cellular Quiescence Using ChIP-Seq and RNA-Seq Analysis.', 'authors' => 'Srivastava S. et al.', 'description' => '<p>Regenerative potential in adult stem cells is closely associated with the establishment of-and exit from-a temporary state of quiescence. Emerging evidence not only provides a rationale for the link between lineage determination programs and cell cycle regulation but also highlights the understanding of quiescence as an actively maintained cellular program, encompassing networks and mechanisms beyond mitotic inactivity or metabolic restriction. Interrogating the quiescent genome and transcriptome using deep-sequencing technologies offers an unprecedented view of the global mechanisms governing this reversibly arrested cellular state and its importance for cell identity. While many efforts have identified and isolated pure target stem cell populations from a variety of adult tissues, there is a growing appreciation that their isolation from the stem cell niche in vivo leads to activation and loss of hallmarks of quiescence. Thus, in vitro models that recapitulate the dynamic reversibly arrested stem cell state in culture and lend themselves to comparison with the activated or differentiated state are useful templates for genome-wide analysis of the quiescence network.In this chapter, we describe the methods that can be adopted for whole genome epigenomic and transcriptomic analysis of cells derived from one such established culture model where mouse myoblasts are triggered to enter or exit quiescence as homogeneous populations. The ability to synchronize myoblasts in G<sub>0</sub> permits insights into the genome in "deep quiescence." The culture methods for generating large populations of quiescent myoblasts in either 2D or 3D culture formats are described in detail in a previous chapter in this series (Arora et al. Methods Mol Biol 1556:283-302, 2017). Among the attractive features of this model are that genes isolated from quiescent myoblasts in culture mark satellite cells in vivo (Sachidanandan et al., J Cell Sci 115:2701-2712, 2002) providing a validation of its approximation of the molecular state of true stem cells. Here, we provide our working protocols for ChIP-seq and RNA-seq analysis, focusing on those experimental elements that require standardization for optimal analysis of chromatin and RNA from quiescent myoblasts, and permitting useful and revealing comparisons with proliferating myoblasts or differentiated myotubes.</p>', 'date' => '2017-10-13', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pubmed/29030824', 'doi' => '', 'modified' => '2017-12-05 09:14:02', 'created' => '2017-12-04 10:43:02', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 13 => array( 'id' => '3299', 'name' => 'Rapid Communication: The correlation between histone modifications and expression of key genes involved in accumulation of adipose tissue in the pig.', 'authors' => 'Kociucka B. et al.', 'description' => '<p>Histone modification is a well-known epigenetic mechanism involved in regulation of gene expression; however, it has been poorly studied in adipose tissues of the pig. Understanding the molecular background of adipose tissue development and function is essential for improving production efficiency and meat quality. The objective of this study was to identify the association between histone modification and the transcript level of genes important for lipid droplet formation and metabolism. Histone modifications at the promoter regions of 6 genes (, , , , , and ) were analyzed using a chromatin immunoprecipitation assay. Two modifications involved in activation of gene expression (acetylation of H3 histone at lysine 9 and methylation of H3 histone at lysine 4) as well as methylation of H3 histone at lysine 27, which is known to be related to gene repression, were examined. The level of histone modification was compared with transcript abundance determined using real-time PCR in tissue samples (subcutaneous fat, visceral fat, and longissimus dorsi muscle) derived from 3 pig breeds significantly differing in fatness traits (Polish Large White, Duroc, and Pietrain). Transcript levels were found to be correlated with histone modifications characteristic to active loci in 4 of 6 genes. A positive correlation between histone H3 lysine 9 acetylation modification and the transcript level of ( = 0.53, < 4.8 × 10), ( = 0.34, < 0.02), and ( = 0.43, < 1.0 × 10) genes was observed. The histone H3 lysine 4 trimethylation modification correlated with transcripts of ( = 0.64, < 4.6 × 10) and ( = 0.37, < 0.01) genes. No correlation was found between transcript level of all studied genes and histone H3 lysine 27 trimethylation level. This is the first study on histone modifications in porcine adipose tissues. We confirmed the relationship between histone modifications and expression of key genes for adipose tissue accumulation in the pig. Epigenetic modulation of the transcriptional profile of these genes (e.g., through nutritional factors) may improve porcine fatness traits in future.</p>', 'date' => '2017-10-01', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pubmed/29108067', 'doi' => '', 'modified' => '2017-12-05 10:39:56', 'created' => '2017-12-05 09:31:02', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 14 => array( 'id' => '3266', 'name' => 'TET2- and TDG-mediated changes are required for the acquisition of distinct histone modifications in divergent terminal differentiation of myeloid cells', 'authors' => 'Garcia-Gomez A. et al.', 'description' => '<p>The plasticity of myeloid cells is illustrated by a diversity of functions including their role as effectors of innate immunity as macrophages (MACs) and bone remodelling as osteoclasts (OCs). TET2, a methylcytosine dioxygenase highly expressed in these cells and frequently mutated in myeloid leukemias, may be a key contributor to this plasticity. Through transcriptomic and epigenomic analyses, we investigated 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) and gene expression changes in two divergent terminal myeloid differentiation processes, namely MAC and OC differentiation. MACs and OCs undergo highly similar 5hmC and 5mC changes, despite their wide differences in gene expression. Many TET2- and thymine-DNA glycosylase (TDG)-dependent 5mC and 5hmC changes directly activate the common terminal myeloid differentiation programme. However, the acquisition of differential features between MACs and OCs also depends on TET2/TDG. In fact, 5mC oxidation precedes differential histone modification changes between MACs and OCs. TET2 and TDG downregulation impairs the acquisition of such differential histone modification and expression patterns at MAC-/OC-specific genes. We prove that the histone H3K4 methyltransferase SETD1A is differentially recruited between MACs and OCs in a TET2-dependent manner. We demonstrate a novel role of these enzymes in the establishment of specific elements of identity and function in terminal myeloid differentiation.</p>', 'date' => '2017-09-29', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pubmed/28973458', 'doi' => '', 'modified' => '2017-10-09 16:19:32', 'created' => '2017-10-09 16:19:32', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 15 => array( 'id' => '3278', 'name' => '5-hydroxymethylcytosine accumulation in postmitotic neurons results in functional demethylation of expressed genes', 'authors' => 'Mellén M. et al.', 'description' => '<p>5-hydroxymethylcytosine (5hmC) occurs at maximal levels in postmitotic neurons, where its accumulation is cell-specific and correlated with gene expression. Here we demonstrate that the distribution of 5hmC in CG and non-CG dinucleotides is distinct and that it reflects the binding specificity and genome occupancy of methylcytosine binding protein 2 (MeCP2). In expressed gene bodies, accumulation of 5hmCG acts in opposition to 5mCG, resulting in “functional” demethylation and diminished MeCP2 binding, thus facilitating transcription. Non-CG hydroxymethylation occurs predominantly in CA dinucleotides (5hmCA) and it accumulates in regions flanking active enhancers. In these domains, oxidation of 5mCA to 5hmCA does not alter MeCP2 binding or expression of adjacent genes. We conclude that the role of 5-hydroxymethylcytosine in postmitotic neurons is to functionally demethylate expressed gene bodies while retaining the role of MeCP2 in chromatin organization.</p>', 'date' => '2017-09-12', 'pmid' => 'http://www.pnas.org/content/114/37/E7812.abstract', 'doi' => '', 'modified' => '2017-10-16 10:25:17', 'created' => '2017-10-16 10:25:17', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 16 => array( 'id' => '3281', 'name' => 'Epigenome profiling and editing of neocortical progenitor cells during development', 'authors' => 'Albert M. et al.', 'description' => '<p>The generation of neocortical neurons from neural progenitor cells (NPCs) is primarily controlled by transcription factors binding to DNA in the context of chromatin. To understand the complex layer of regulation that orchestrates different NPC types from the same DNA sequence, epigenome maps with cell type resolution are required. Here, we present genomewide histone methylation maps for distinct neural cell populations in the developing mouse neocortex. Using different chromatin features, we identify potential novel regulators of cortical NPCs. Moreover, we identify extensive H3K27me3 changes between NPC subtypes coinciding with major developmental and cell biological transitions. Interestingly, we detect dynamic H3K27me3 changes on promoters of several crucial transcription factors, including the basal progenitor regulator <i>Eomes</i> We use catalytically inactive Cas9 fused with the histone methyltransferase Ezh2 to edit H3K27me3 at the <i>Eomes</i> locus <i>in vivo</i>, which results in reduced Tbr2 expression and lower basal progenitor abundance, underscoring the relevance of dynamic H3K27me3 changes during neocortex development. Taken together, we provide a rich resource of neocortical histone methylation data and outline an approach to investigate its contribution to the regulation of selected genes during neocortical development.</p>', 'date' => '2017-09-01', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pubmed/28765163', 'doi' => '', 'modified' => '2017-10-17 10:25:58', 'created' => '2017-10-17 10:25:58', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 17 => array( 'id' => '3213', 'name' => 'Viral driven epigenetic events alter the expression of cancer-related genes in Epstein-Barr-virus naturally infected Burkitt lymphoma cell lines', 'authors' => 'Hector Hernandez-Vargas, Henri Gruffat, Marie Pierre Cros, Audrey Diederichs, Cécilia Sirand, Romina C. Vargas-Ayala, Antonin Jay, Geoffroy Durand, Florence Le Calvez-Kelm, Zdenko Herceg, Evelyne Manet, Christopher P. Wild', 'description' => '<p><span>Epstein-Barr virus (EBV) was identified as the first human virus to be associated with a human malignancy, Burkitt’s lymphoma (BL), a pediatric cancer endemic in sub-Saharan Africa. The exact mechanism of how EBV contributes to the process of lymphomagenesis is not fully understood. Recent studies have highlighted a genetic difference between endemic (EBV+) and sporadic (EBV−) BL, with the endemic variant showing a lower somatic mutation load, which suggests the involvement of an alternative virally-driven process of transformation in the pathogenesis of endemic BL. We tested the hypothesis that a global change in DNA methylation may be induced by infection with EBV, possibly thereby accounting for the lower mutation load observed in endemic BL. Our comparative analysis of the methylation profiles of a panel of BL derived cell lines, naturally infected or not with EBV, revealed that the presence of the virus is associated with a specific pattern of DNA methylation resulting in altered expression of cellular genes with a known or potential role in lymphomagenesis. These included ID3, a gene often found to be mutated in sporadic BL. In summary this study provides evidence that EBV may contribute to the pathogenesis of BL through an epigenetic mechanism.</span></p>', 'date' => '2017-07-19', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5517637/', 'doi' => ' 10.1038/s41598-017-05713-2', 'modified' => '2017-07-28 08:05:11', 'created' => '2017-07-28 08:05:11', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 18 => array( 'id' => '3216', 'name' => 'Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b', 'authors' => 'Kevin T. Ebata, Kathryn Mesh, Shichong Liu, Misha Bilenky, Alexander Fekete, Michael G. Acker, Martin Hirst, Benjamin A. Garcia and Miguel Ramalho-Santos', 'description' => '<section xmlns="" xmlns:fn="http://www.w3.org/2005/xpath-functions" xmlns:meta="http://www.springer.com/app/meta" class="Abstract" id="Abs1" lang="en"> <div class="js-CollapseSection"> <div xmlns:func="http://oscar.fig.bmc.com" xmlns="http://www.w3.org/1999/xhtml" class="AbstractSection" id="ASec1"> <h3 xmlns="" class="Heading">Background</h3> <p id="Par1" class="Para">Histone methylation patterns regulate gene expression and are highly dynamic during development. The erasure of histone methylation is carried out by histone demethylase enzymes. We had previously shown that vitamin C enhances the activity of Tet enzymes in embryonic stem (ES) cells, leading to DNA demethylation and activation of germline genes.</p> </div> <div xmlns:func="http://oscar.fig.bmc.com" xmlns="http://www.w3.org/1999/xhtml" class="AbstractSection" id="ASec2"> <h3 xmlns="" class="Heading">Results</h3> <p id="Par2" class="Para">We report here that vitamin C induces a remarkably specific demethylation of histone H3 lysine 9 dimethylation (H3K9me2) in naïve ES cells. Vitamin C treatment reduces global levels of H3K9me2, but not other histone methylation marks analyzed, as measured by western blot, immunofluorescence and mass spectrometry. Vitamin C leads to widespread loss of H3K9me2 at large chromosomal domains as well as gene promoters and repeat elements. Vitamin C-induced loss of H3K9me2 occurs rapidly within 24 h and is reversible. Importantly, we found that the histone demethylases Kdm3a and Kdm3b are required for vitamin C-induced demethylation of H3K9me2. Moreover, we show that vitamin C-induced Kdm3a/b-mediated H3K9me2 demethylation and Tet-mediated DNA demethylation are independent processes at specific loci. Lastly, we document Kdm3a/b are partially required for the upregulation of germline genes by vitamin C.</p> </div> <div xmlns:func="http://oscar.fig.bmc.com" xmlns="http://www.w3.org/1999/xhtml" class="AbstractSection" id="ASec3"> <h3 xmlns="" class="Heading">Conclusions</h3> <p id="Par3" class="Para">These results reveal a specific role for vitamin C in histone demethylation in ES cells and document that DNA methylation and H3K9me2 cooperate to silence germline genes in pluripotent cells.</p> </div> </div> </section>', 'date' => '2017-07-12', 'pmid' => 'https://epigeneticsandchromatin.biomedcentral.com/articles/10.1186/s13072-017-0143-3', 'doi' => 'https://doi.org/10.1186/s13072-017-0143-3', 'modified' => '2017-08-23 14:47:51', 'created' => '2017-07-29 08:04:03', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 19 => array( 'id' => '3229', 'name' => 'A chronic low dose of Δ9-tetrahydrocannabinol (THC) restores cognitive function in old mice', 'authors' => 'Bilkei-Gorzo A. et al.', 'description' => '<p>The balance between detrimental, pro-aging, often stochastic processes and counteracting homeostatic mechanisms largely determines the progression of aging. There is substantial evidence suggesting that the endocannabinoid system (ECS) is part of the latter system because it modulates the physiological processes underlying aging. The activity of the ECS declines during aging, as CB1 receptor expression and coupling to G proteins are reduced in the brain tissues of older animals and the levels of the major endocannabinoid 2-arachidonoylglycerol (2-AG) are lower. However, a direct link between endocannabinoid tone and aging symptoms has not been demonstrated. Here we show that a low dose of Δ<sup>9</sup>-tetrahydrocannabinol (THC) reversed the age-related decline in cognitive performance of mice aged 12 and 18 months. This behavioral effect was accompanied by enhanced expression of synaptic marker proteins and increased hippocampal spine density. THC treatment restored hippocampal gene transcription patterns such that the expression profiles of THC-treated mice aged 12 months closely resembled those of THC-free animals aged 2 months. The transcriptional effects of THC were critically dependent on glutamatergic CB1 receptors and histone acetylation, as their inhibition blocked the beneficial effects of THC. Thus, restoration of CB1 signaling in old individuals could be an effective strategy to treat age-related cognitive impairments.</p>', 'date' => '2017-06-01', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pubmed/28481360', 'doi' => '', 'modified' => '2017-08-23 14:54:30', 'created' => '2017-08-23 14:54:30', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 20 => array( 'id' => '3169', 'name' => 'PPARγ Links BMP2 and TGFβ1 Pathways in Vascular Smooth Muscle Cells, Regulating Cell Proliferation and Glucose Metabolism', 'authors' => 'Laurent Calvier, Philippe Chouvarine, Ekaterina Legchenko, Nadine Hoffmann, Jonas Geldner, Paul Borchert, Danny Jonigk, Miklos M. Mozes, Georg Hansmann', 'description' => '<p><span>BMP2 and TGFβ1 are functional antagonists of pathological remodeling in the arteries, heart, and lung; however, the mechanisms in VSMCs, and their disturbance in pulmonary arterial hypertension (PAH), are unclear. We found a pro-proliferative TGFβ1-Stat3-FoxO1 axis in VSMCs, and PPARγ as inhibitory regulator of TGFβ1-Stat3-FoxO1 and TGFβ1-Smad3/4, by physically interacting with Stat3 and Smad3. TGFβ1 induces fibrosis-related genes and miR-130a/301b, suppressing PPARγ. Conversely, PPARγ inhibits TGFβ1-induced mitochondrial activation and VSMC proliferation, and regulates two glucose metabolism-related enzymes, platelet isoform of phosphofructokinase (PFKP, a PPARγ target, via miR-331-5p) and protein phosphatase 1 regulatory subunit 3G (PPP1R3G, a Smad3 target). PPARγ knockdown/deletion in VSMCs activates TGFβ1 signaling. The PPARγ agonist pioglitazone reverses PAH and inhibits the TGFβ1-Stat3-FoxO1 axis in TGFβ1-overexpressing mice. We identified PPARγ as a missing link between BMP2 and TGFβ1 pathways in VSMCs. PPARγ activation can be beneficial in TGFβ1-associated diseases, such as PAH, parenchymal lung diseases, and Marfan’s syndrome.</span></p>', 'date' => '2017-05-02', 'pmid' => 'http://www.cell.com/cell-metabolism/abstract/S1550-4131(17)30163-8', 'doi' => 'http://dx.doi.org/10.1016/j.cmet.2017.03.011', 'modified' => '2017-05-11 11:30:23', 'created' => '2017-05-09 19:10:49', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 21 => array( 'id' => '3155', 'name' => 'JMJD3 aids in reprogramming of bone marrow progenitor cells to hepatic phenotype through epigenetic activation of hepatic transcription factors', 'authors' => 'Veena Kochat, Zaffar Equbal, Prakash Baligar, Vikash Kumar, Madhulika Srivastava, Asok Mukhopadhyay', 'description' => '<p><span>The strictly regulated unidirectional differentiation program in some somatic stem/progenitor cells has been found to be modified in the ectopic site (tissue) undergoing regeneration. In these cases, the lineage barrier is crossed by either heterotypic cell fusion or direct differentiation. Though studies have shown the role of coordinated genetic and epigenetic mechanisms in cellular development and differentiation, how the lineage fate of adult bone marrow progenitor cells (BMPCs) is reprogrammed during liver regeneration and whether this lineage switch is stably maintained are not clearly understood. In the present study, we wanted to decipher genetic and epigenetic mechanisms that involve in lineage reprogramming of BMPCs into hepatocyte-like cells. Here we report dynamic transcriptional change during cellular reprogramming of BMPCs to hepatocytes and dissect the epigenetic switch mechanism of BM cell-mediated liver regeneration after acute injury. Genome-wide gene expression analysis in BM-derived hepatocytes, isolated after 1 month and 5 months of transplantation, showed induction of hepatic transcriptional program and diminishing of donor signatures over the time. The transcriptional reprogramming of BM-derived cells was found to be the result of enrichment of activating marks (H3K4me3 and H3K9Ac) and loss of repressive marks (H3K27me3 and H3K9me3) at the promoters of hepatic transcription factors (HTFs). Further analyses showed that BMPCs possess bivalent histone marks (H3K4me3 and H3K27me3) at the promoters of crucial HTFs. H3K27 methylation dynamics at the HTFs was antagonistically regulated by EZH2 and JMJD3. Preliminary evidence suggests a role of JMJD3 in removal of H3K27me3 mark from promoters of HTFs, thus activating epigenetically poised hepatic genes in BMPCs prior to partial nuclear reprogramming. The importance of JMJD3 in reprogramming of BMPCs to hepatic phenotype was confirmed by inhibiting catalytic function of the enzyme using small molecule GSK-J4. Our results propose a potential role of JMJD3 in lineage conversion of BM cells into hepatic lineage.</span></p>', 'date' => '2017-03-22', 'pmid' => 'http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173977', 'doi' => 'http://dx.doi.org/10.1371/journal.pone.0173977', 'modified' => '2017-04-09 09:10:08', 'created' => '2017-04-09 09:10:08', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 22 => array( 'id' => '3124', 'name' => 'Chromatin Domain Organization of TCRb locus and its perturbation by ectopic CTCF binding', 'authors' => 'Rawat P. et al.', 'description' => '<p>CTCF mediated chromatin interactions influence organization and function of mammalian genome in diverse ways. We analyzed the interactions amongst CTCF binding sites (CBS) at murine TCRb locus to discern the role of CTCF mediated interactions in regulation of transcription and VDJ recombination. 3C analysis revealed thymocyte specific long-range intrachromosomal interactions amongst various CBS across the locus that were relevant for defining the limit of enhancer Eb regulated Recombination Centre (RC) and for facilitating the spatial proximity of Trbv segments to RC. Ectopic CTCF binding in the RC region, effected via genetic manipulation, altered CBS directed chromatin loops, interfered with RC establishment and reduced the spatial proximity of RC with Trbv segments. Changes in chromatin loop organization by ectopic CTCF binding were relatively modest but influenced transcription and VDJ recombination dramatically. Besides revealing the importance of CTCF mediated chromatin organization for TCRb regulation, the observed chromatin loops were consistent with the emerging idea that CBS orientations influence chromatin loop organization and underscored the importance of CBS orientations for defining chromatin architecture that supports VDJ recombination. Further, our study suggests that in addition to mediating long-range chromatin interactions, CTCF influences intricate configuration of chromatin loops that govern functional interactions between elements.</p>', 'date' => '2017-01-30', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pubmed/28137913', 'doi' => '', 'modified' => '2017-02-15 17:35:17', 'created' => '2017-02-15 17:35:17', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 23 => array( 'id' => '3085', 'name' => 'Genomic Characterization of Metformin Hepatic Response', 'authors' => 'Luizon M.R. et al.', 'description' => '<p>Metformin is used as a first-line therapy for type 2 diabetes (T2D) and prescribed for numerous other diseases. However, its mechanism of action in the liver has yet to be characterized in a systematic manner. To comprehensively identify genes and regulatory elements associated with metformin treatment, we carried out RNA-seq and ChIP-seq (H3K27ac, H3K27me3) on primary human hepatocytes from the same donor treated with vehicle control, metformin or metformin and compound C, an AMP-activated protein kinase (AMPK) inhibitor (allowing to identify AMPK-independent pathways). We identified thousands of metformin responsive AMPK-dependent and AMPK-independent differentially expressed genes and regulatory elements. We functionally validated several elements for metformin-induced promoter and enhancer activity. These include an enhancer in an ataxia telangiectasia mutated (ATM) intron that has SNPs in linkage disequilibrium with a metformin treatment response GWAS lead SNP (rs11212617) that showed increased enhancer activity for the associated haplotype. Expression quantitative trait locus (eQTL) liver analysis and CRISPR activation suggest that this enhancer could be regulating ATM, which has a known role in AMPK activation, and potentially also EXPH5 and DDX10, its neighboring genes. Using ChIP-seq and siRNA knockdown, we further show that activating transcription factor 3 (ATF3), our top metformin upregulated AMPK-dependent gene, could have an important role in gluconeogenesis repression. Our findings provide a genome-wide representation of metformin hepatic response, highlight important sequences that could be associated with interindividual variability in glycemic response to metformin and identify novel T2D treatment candidates.</p>', 'date' => '2016-11-30', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pubmed/27902686', 'doi' => '', 'modified' => '2016-12-20 10:41:29', 'created' => '2016-12-20 10:41:29', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 24 => array( 'id' => '3028', 'name' => 'DNA demethylation of inflammasome-associated genes is enhanced in patients with cryopyrin-associated periodic syndromes', 'authors' => 'Vento-Tormo R et al.', 'description' => '<h4>BACKGROUND:</h4> <p><abstracttext label="BACKGROUND" nlmcategory="BACKGROUND">Inflammasomes are cytosolic multiprotein complexes in macrophages. They assemble after infection- or stress-associated stimuli, activating both caspase-1-mediated inflammatory cytokine secretion and pyroptosis. Increased inflammasome activity resulting from gene mutations is related to monogenic autoinflammatory syndromes. However, variable penetrance among patients with the same gene mutations suggests involvement of additional mechanisms associated with inflammasome gene regulation.</abstracttext></p> <h4>OBJECTIVE:</h4> <p><abstracttext label="OBJECTIVE" nlmcategory="OBJECTIVE">We sought to investigate the role of DNA demethylation in activating inflammasome genes during macrophage differentiation and monocyte activation in healthy control subjects and patients with autoinflammatory syndrome.</abstracttext></p> <h4>METHODS:</h4> <p><abstracttext label="METHODS" nlmcategory="METHODS">Inflammasome-related genes were tested for DNA methylation and mRNA levels by using bisulfite pyrosequencing and quantitative RT-PCR in monocytes in vitro differentiated to macrophages and exposed to inflammatory conditions. The contribution of Tet methylcytosine dioxygenase 2 (TET2) and nuclear factor κB to DNA demethylation was tested by using chromatin immunoprecipitation, small interfering RNA-mediated downregulation, and pharmacologic inhibition.</abstracttext></p> <h4>RESULTS:</h4> <p><abstracttext label="RESULTS" nlmcategory="RESULTS">We observed that inflammasome-related genes are rapidly demethylated in both monocyte-to-macrophage differentiation and on monocyte activation. Demethylation associates with increased gene expression, and both mechanisms are impaired when TET2 and nuclear factor κB are downregulated. We analyzed DNA methylation levels of inflammasome-related genes in patients with cryopyrin-associated periodic syndromes (CAPS) and familial Mediterranean fever, 2 archetypical monogenic autoinflammatory syndromes. Under the above conditions, monocytes from untreated patients with CAPS undergo more efficient DNA demethylation than those of healthy subjects. Interestingly, patients with CAPS treated with anti-IL-1 drugs display methylation levels similar to those of healthy control subjects.</abstracttext></p> <h4>CONCLUSION:</h4> <p><abstracttext label="CONCLUSION" nlmcategory="CONCLUSIONS">Our study is the first to demonstrate the involvement of DNA methylation-associated alterations in patients with monogenic autoinflammatory disease and opens up possibilities for novel clinical markers.</abstracttext></p>', 'date' => '2016-07-06', 'pmid' => 'http://www.ncbi.nlm.nih.gov/pubmed/27394913', 'doi' => '', 'modified' => '2016-09-08 15:10:24', 'created' => '2016-09-08 15:10:24', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 25 => array( 'id' => '2938', 'name' => 'Molecular mechanisms in H2O2-induced increase in AT1 receptor gene expression in cardiac fibroblasts: a role for endogenously generated Angiotensin II.', 'authors' => 'Anupama V et al.', 'description' => '<p>The AT1 receptor (AT1R) mediates the manifold actions of Angiotensin II in the cardiovascular system. This study probed the molecular mechanisms that link altered redox status to AT1R expression in cardiac fibroblasts. Real-time PCR and western blot analysis showed that H<sub>2</sub>O<sub>2</sub> enhances AT1R mRNA and protein expression via NADPH oxidase-dependent reactive oxygen species induction. Activation of NF-κB and AP-1, demonstrated by electrophoretic mobility shift assay, abolition of AT1R expression by their inhibitors, Bay-11-7085 and SR11302, respectively, and luciferase and chromatin immunoprecipitation assays confirmed transcriptional control of AT1R by NF-κB and AP-1 in H<sub>2</sub>O<sub>2</sub>-treated cells. Further, inhibition of ERK1/2, p38 MAPK and c-Jun N-terminal kinase (JNK) using chemical inhibitors or by RNA interference attenuated AT1R expression. Inhibition of the MAPKs showed that while ERK1/2 and p38 MAPK suffice for NF-κB activation, all three kinases are required for AP-1 activation. H<sub>2</sub>O<sub>2</sub> also increased collagen type I mRNA and protein expression. Interestingly, the AT1R antagonist, candesartan, attenuated H<sub>2</sub>O<sub>2</sub>-stimulated AT1R and collagen mRNA and protein expression, suggesting that H<sub>2</sub>O<sub>2</sub> up-regulates AT1R and collagen expression via local Angiotensin II generation, which was confirmed by Real-time PCR and ELISA. To conclude, oxidative stress enhances AT1R gene expression in cardiac fibroblasts by a complex mechanism involving the redox-sensitive transcription factors NF-κB and AP-1 that are activated by the co-ordinated action of ERK1/2, p38 MAPK and JNK. Importantly, by causally linking oxidative stress to Angiotensin II and AT1R up-regulation in cardiac fibroblasts, this study offers a novel perspective on the pathogenesis of cardiovascular diseases associated with oxidative stress.</p>', 'date' => '2016-05-18', 'pmid' => 'http://www.ncbi.nlm.nih.gov/pubmed/27208880', 'doi' => ' 10.1016/j.yjmcc.2016.05.010', 'modified' => '2016-05-27 10:16:58', 'created' => '2016-05-27 10:16:58', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 26 => array( 'id' => '2956', 'name' => 'Epigenetic alterations of CYP19A1 gene in Cumulus cells and its relevance to infertility in endometriosis', 'authors' => 'Hosseini E et al.', 'description' => '<div class=""> <h4>PURPOSE:</h4> <p><abstracttext label="PURPOSE" nlmcategory="OBJECTIVE">The purpose of the present study was to investigate the epigenetic mechanisms responsible for the aberrant aromatase expression (CYP19A1) in Cumulus Cells (CCs) of infertile endometriosis patients.</abstracttext></p> <h4>METHOD:</h4> <p><abstracttext label="METHOD" nlmcategory="METHODS">Cumulus cells were obtained from 24 infertile patients with and without endometriosis who underwent ovarian stimulation for intracytoplasmic sperm injection. Expression of CYP19A1 gene was quantified using Reverse Transcription Q-PCR. DNA methylation, histone modifications, and binding of Estrogen Receptor, ERβ to regulatory DNA sequences of CYP19A1 gene were evaluated by Chromatin ImmunoPrecipitation (ChIP) assay.</abstracttext></p> <h4>RESULTS:</h4> <p><abstracttext label="RESULTS" nlmcategory="RESULTS">CYP19A1 gene expression in CCs of endometriosis patients was significantly lower than the control group (P = 0.04). Higher incorporation of MeCP2 (as a marker of DNA methylation) on PII and PI.4 promoters, and hypoacetylation at H3K9 in PII and hypermethylation at H3K9 in PI.4 were observed in CYP19A1 gene in endometriosis patients (P < 0.05). Moreover, a decreased level of ERβ binding to PII and an increased level of its binding to PI.3 and PI.4 promoters of CYP19A1 were observed in endometriosis patients when compared to control.</abstracttext></p> <h4>CONCLUSION:</h4> <p><abstracttext label="CONCLUSION" nlmcategory="CONCLUSIONS">Significant reduction of CYP19A1 gene expression in CCs of endometriosis patients may be the result of epigenetic alterations in its regulatory regions, either by DNA methylation or histone modifications. These epigenetic changes along with differential binding of ERβ (as a transcription factor) in CYP19A1 promoters may impair follicular steroidogenesis, leading to poor Oocyte and embryo condition in endometriosis patients.</abstracttext></p> </div>', 'date' => '2016-05-11', 'pmid' => 'http://www.ncbi.nlm.nih.gov/pubmed/27167072', 'doi' => '', 'modified' => '2016-06-15 16:04:13', 'created' => '2016-06-15 16:04:13', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 27 => array( 'id' => '3064', 'name' => 'Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death', 'authors' => 'Bouilloux F. et al.', 'description' => '<p>Although cardio-vascular incidents and sudden cardiac death (SCD) are among the leading causes of premature death in the general population, the origins remain unidentified in many cases. Genome-wide association studies have identified Meis1 as a risk factor for SCD. We report that Meis1 inactivation in the mouse neural crest leads to an altered sympatho-vagal regulation of cardiac rhythmicity in adults characterized by a chronotropic incompetence and cardiac conduction defects, thus increasing the susceptibility to SCD. We demonstrated that Meis1 is a major regulator of sympathetic target-field innervation and that Meis1 deficient sympathetic neurons die by apoptosis from early embryonic stages to perinatal stages. In addition, we showed that Meis1 regulates the transcription of key molecules necessary for the endosomal machinery. Accordingly, the traffic of Rab5(+) endosomes is severely altered in Meis1-inactivated sympathetic neurons. These results suggest that Meis1 interacts with various trophic factors signaling pathways during postmitotic neurons differentiation.</p>', 'date' => '2016-02-08', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pubmed/26857994', 'doi' => '', 'modified' => '2016-11-04 16:50:53', 'created' => '2016-11-04 16:50:53', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 28 => array( 'id' => '2831', 'name' => 'Desensitization and incomplete recovery of hepatic target genes after chronic thyroid hormone treatment and withdrawal in male adult mice', 'authors' => 'Kenji Ohba, Melvin Khee-Shing Leow, Brijesh Kumar Singh, Rohit Anthony Sinha, Ronny Lesmana,Xiao-Hui Liao, Paul Michael Yen', 'description' => '<p>Here, we examined changes in hepatic gene expression and serum TH/thyrotropin (TSH) levels in adult male mice treated either with a single T3 (20 g/100 g body weight) injection (acute T3) or daily injections for 14 days (chronic T3) followed by 10 days withdrawal. Chromatin immunoprecipitation analysis of representative positively-regulated target genes suggested that acetylation of H3K9/K14 was associated with acute stimulation, whereas trimethylation of H3K4 was associated with chronic stimulation. In an in vivo model of chronic intrahepatic hyperthyroidism since birth, adult male monocarboxylate transporter-8 knockout mice also demonstrated desensitization of most acutely stimulated target genes that were examined. In summary, we have identified transcriptional desensitization and incomplete recovery of gene expression during chronic hyperthyroidism and recovery. Our findings may be a potential reason for discordance between clinical symptoms and serum TH levels observed in these conditions.</p>', 'date' => '2016-02-03', 'pmid' => 'http://press.endocrine.org/doi/pdf/10.1210/en.2015-1848', 'doi' => '10.1210/en.2015-1848', 'modified' => '2016-03-01 04:44:54', 'created' => '2016-03-01 04:44:54', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 29 => array( 'id' => '2965', 'name' => 'Molecular basis and functional significance of Angiotensin II-induced increase in Discoidin Domain Receptor 2 gene expression in cardiac fibroblasts', 'authors' => 'George M et al.', 'description' => '<p>Delineation of mechanisms underlying the regulation of fibrosis-related genes in the heart is an important clinical goal as cardiac fibrosis is a major cause of myocardial dysfunction. This study probed the regulation of Discoidin Domain Receptor 2 (DDR2) gene expression and the regulatory links between Angiotensin II, DDR2 and collagen in Angiotensin II-stimulated cardiac fibroblasts. Real-time PCR and western blot analyses showed that Angiotensin II enhances DDR2 mRNA and protein expression in rat cardiac fibroblasts via NADPH oxidase-dependent reactive oxygen species induction. NF-κB activation, demonstrated by gel shift assay, abolition of DDR2 expression upon NF-κB inhibition, and luciferase and chromatin immunoprecipitation assays confirmed transcriptional control of DDR2 by NF-κB in Angiotensin II-treated cells. Inhibitors of Phospholipase C and Protein kinase C prevented Angiotensin II-dependent p38 MAPK phosphorylation that in turn blocked NF-κB activation. Angiotensin II also enhanced collagen gene expression. Importantly, the stimulatory effects of Angiotensin II on DDR2 and collagen were inter-dependent as siRNA-mediated silencing of one abolished the other. Angiotensin II promoted ERK1/2 phosphorylation whose inhibition attenuated Angiotensin II-stimulation of collagen but not DDR2. Furthermore, DDR2 knockdown prevented Angiotensin II-induced ERK1/2 phosphorylation, indicating that DDR2-dependent ERK1/2 activation enhances collagen expression in cells exposed to Angiotensin II. DDR2 knockdown was also associated with compromised wound healing response to Angiotensin II. To conclude, Angiotensin II promotes NF-κB activation that up-regulates DDR2 transcription. A reciprocal regulatory relationship between DDR2 and collagen, involving cross-talk between the GPCR and RTK pathways, is central to Angiotensin II-induced increase in collagen expression in cardiac fibroblasts.</p>', 'date' => '2016-01-01', 'pmid' => 'http://www.ncbi.nlm.nih.gov/pubmed/26674152', 'doi' => '10.1016/j.yjmcc.2015.12.004', 'modified' => '2016-06-28 09:38:12', 'created' => '2016-06-28 09:38:12', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 30 => array( 'id' => '2875', 'name' => 'An Insulator Element Located at the Cyclin B1 Interacting Protein 1 Gene Locus Is Highly Conserved among Mammalian Species', 'authors' => 'Yoshida W, Tomikawa J, Inaki M, Kimura H, Onodera M, Hata K, Nakabayashi K', 'description' => '<p>Insulators are <em>cis</em>-elements that control the direction of enhancer and silencer activities (enhancer-blocking) and protect genes from silencing by heterochromatinization (barrier activity). Understanding insulators is critical to elucidate gene regulatory mechanisms at chromosomal domain levels. Here, we focused on a genomic region upstream of the mouse <em>Ccnb1ip1</em> (cyclin B1 interacting protein 1) gene that was methylated in E9.5 embryos of the C57BL/6 strain, but unmethylated in those of the 129X1/SvJ and JF1/Ms strains. We hypothesized the existence of an insulator-type element that prevents the spread of DNA methylation within the 1.8 kbp segment, and actually identified a 242-bp and a 185-bp fragments that were located adjacent to each other and showed insulator and enhancer activities, respectively, in reporter assays. We designated these genomic regions as the <em>Ccnb1ip1</em> insulator and the <em>Ccnb1ip1</em> enhancer. The <em>Ccnb1ip1</em> insulator showed enhancer-blocking activity in the luciferase assays and barrier activity in the colony formation assays. Further examination of the <em>Ccnb1ip1</em> locus in other mammalian species revealed that the insulator and enhancer are highly conserved among a wide variety of species, and are located immediately upstream of the transcriptional start site of <em>Ccnb1ip1</em>. These newly identified cis-elements may be involved in transcriptional regulation of <em>Ccnb1ip1</em>, which is important in meiotic crossing-over and G2/M transition of the mitotic cell cycle.</p>', 'date' => '2015-06-25', 'pmid' => 'http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481373/', 'doi' => '10.1371/journal.pone.0131204', 'modified' => '2016-03-30 10:47:38', 'created' => '2016-03-30 10:47:38', 'ProductsPublication' => array( [maximum depth reached] ) ) ), 'Testimonial' => array(), 'Area' => array(), 'SafetySheet' => array( (int) 0 => array( 'id' => '670', 'name' => 'LowCell ChIP kit protein A SDS GB en', 'language' => 'en', 'url' => 'files/SDS/LowCell-ChIP/SDS-C01010070-LowCell_ChIP_kit_protein_A-GB-en-1_0.pdf', 'countries' => 'GB', 'modified' => '2020-07-01 17:09:37', 'created' => '2020-07-01 17:09:37', 'ProductsSafetySheet' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '672', 'name' => 'LowCell ChIP kit protein A SDS US en', 'language' => 'en', 'url' => 'files/SDS/LowCell-ChIP/SDS-C01010070-LowCell_ChIP_kit_protein_A-US-en-1_0.pdf', 'countries' => 'US', 'modified' => '2020-07-01 17:10:39', 'created' => '2020-07-01 17:10:39', 'ProductsSafetySheet' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '666', 'name' => 'LowCell ChIP kit protein A SDS BE nl', 'language' => 'nl', 'url' => 'files/SDS/LowCell-ChIP/SDS-C01010070-LowCell_ChIP_kit_protein_A-BE-nl-1_0.pdf', 'countries' => 'BE', 'modified' => '2020-07-01 17:07:36', 'created' => '2020-07-01 17:07:36', 'ProductsSafetySheet' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '665', 'name' => 'LowCell ChIP kit protein A SDS BE fr', 'language' => 'fr', 'url' => 'files/SDS/LowCell-ChIP/SDS-C01010070-LowCell_ChIP_kit_protein_A-BE-fr-1_0.pdf', 'countries' => 'BE', 'modified' => '2020-07-01 17:07:12', 'created' => '2020-07-01 17:07:12', 'ProductsSafetySheet' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '669', 'name' => 'LowCell ChIP kit protein A SDS FR fr', 'language' => 'fr', 'url' => 'files/SDS/LowCell-ChIP/SDS-C01010070-LowCell_ChIP_kit_protein_A-FR-fr-1_0.pdf', 'countries' => 'FR', 'modified' => '2020-07-01 17:09:12', 'created' => '2020-07-01 17:09:12', 'ProductsSafetySheet' => array( [maximum depth reached] ) ), (int) 5 => array( 'id' => '668', 'name' => 'LowCell ChIP kit protein A SDS ES es', 'language' => 'es', 'url' => 'files/SDS/LowCell-ChIP/SDS-C01010070-LowCell_ChIP_kit_protein_A-ES-es-1_0.pdf', 'countries' => 'ES', 'modified' => '2020-07-01 17:08:34', 'created' => '2020-07-01 17:08:34', 'ProductsSafetySheet' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '667', 'name' => 'LowCell ChIP kit protein A SDS DE de', 'language' => 'de', 'url' => 'files/SDS/LowCell-ChIP/SDS-C01010070-LowCell_ChIP_kit_protein_A-DE-de-1_0.pdf', 'countries' => 'DE', 'modified' => '2020-07-01 17:08:05', 'created' => '2020-07-01 17:08:05', 'ProductsSafetySheet' => array( [maximum depth reached] ) ), (int) 7 => array( 'id' => '671', 'name' => 'LowCell ChIP kit protein A SDS JP ja', 'language' => 'ja', 'url' => 'files/SDS/LowCell-ChIP/SDS-C01010070-LowCell_ChIP_kit_protein_A-JP-ja-1_0.pdf', 'countries' => 'JP', 'modified' => '2020-07-01 17:10:05', 'created' => '2020-07-01 17:10:05', 'ProductsSafetySheet' => array( [maximum depth reached] ) ) ) ) $meta_canonical = 'https://www.diagenode.com/en/p/lowcell-chip-kit-protein-a-x48-48-rxns' $country = 'US' $countries_allowed = array( (int) 0 => 'CA', (int) 1 => 'US', (int) 2 => 'IE', (int) 3 => 'GB', (int) 4 => 'DK', (int) 5 => 'NO', (int) 6 => 'SE', (int) 7 => 'FI', (int) 8 => 'NL', (int) 9 => 'BE', (int) 10 => 'LU', (int) 11 => 'FR', (int) 12 => 'DE', (int) 13 => 'CH', (int) 14 => 'AT', (int) 15 => 'ES', (int) 16 => 'IT', (int) 17 => 'PT' ) $outsource = false $other_formats = array() $pro = array( 'id' => '1847', 'antibody_id' => null, 'name' => 'LowCell# ChIP kit protein A x16', 'description' => '<p>The LowCell# ChIP kit protein A is one of Diagenode old generation ChIP kits, still present in the catalogue. At present we highly recommend our new generation <strong>True MicroChIP kit</strong> with optimized reagents and protocol to enable successful <strong>ChIP/ChIP-seq</strong> on as few as <strong>10 000 cells</strong>. Read more about our <a href="https://www.diagenode.com/en/p/true-microchip-kit-x16-16-rxns">True MicroChIP kit</a>.</p> <p><span> </span></p>', 'label1' => 'Characteristics', 'info1' => '<p>The LowCell# ChIP kit has been validated using chromatin sheared by sonication using the Bioruptor<sup>®</sup>. The Kit includes a DNA purifying slurry for an extra-fast method to purify your IP’d material (for qPCR analysis).</p>', 'label2' => '', 'info2' => '', 'label3' => '', 'info3' => '', 'format' => '16 rxns', 'catalog_number' => 'C01010070', 'old_catalog_number' => 'kch-maglow-A16', 'sf_code' => 'C01010070-', 'type' => 'RFR', 'search_order' => '04-undefined', 'price_EUR' => '413', 'price_USD' => '418', 'price_GBP' => '378', 'price_JPY' => '81000', 'price_CNY' => '', 'price_AUD' => '1045', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => false, 'master' => false, 'last_datasheet_update' => '0000-00-00', 'slug' => 'lowcell-chip-kit-protein-a-x16-16-rxns', 'meta_title' => 'LowCell# ChIP kit protein A x16', 'meta_keywords' => '', 'meta_description' => 'LowCell# ChIP kit protein A x16', 'modified' => '2021-06-30 15:57:53', 'created' => '2015-06-29 14:08:20', 'ProductsGroup' => array( 'id' => '105', 'product_id' => '1847', 'group_id' => '96' ) ) $edit = '' $testimonials = '' $featured_testimonials = '' $related_products = '<li> <div class="row"> <div class="small-12 columns"> <a href="/en/p/bioruptor-pico-sonication-device"><img src="/img/product/shearing_technologies/bioruptor_pico.jpg" alt="Bioruptor pico next gen sequencing " class="th"/></a> </div> <div class="small-12 columns"> <div class="small-6 columns" style="padding-left:0px;padding-right:0px;margin-top:-6px;margin-left:-1px"> <span class="success label" style="">B01060010</span> </div> <div class="small-6 columns text-right" style="padding-left:0px;padding-right:0px;margin-top:-6px"> <!--a href="#" style="color:#B21329"><i class="fa fa-info-circle"></i></a--> </div> </div> <div class="small-12 columns" > <h6 style="height:60px">Bioruptor® Pico sonication device</h6> </div> </div> </li> <li> <div class="row"> <div class="small-12 columns"> <a href="/en/p/diamag02-magnetic-rack-1-unit"><img src="/img/product/reagents/diamag02.png" alt="some alt" class="th"/></a> </div> <div class="small-12 columns"> <div class="small-6 columns" style="padding-left:0px;padding-right:0px;margin-top:-6px;margin-left:-1px"> <span class="success label" style="">B04000001</span> </div> <div class="small-6 columns text-right" style="padding-left:0px;padding-right:0px;margin-top:-6px"> <!--a href="#" style="color:#B21329"><i class="fa fa-info-circle"></i></a--> <!-- BEGIN: ADD TO CART MODAL --><div id="cartModal-1819" class="reveal-modal small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <form action="/en/carts/add/1819" id="CartAdd/1819Form" method="post" accept-charset="utf-8"><div style="display:none;"><input type="hidden" name="_method" value="POST"/></div><input type="hidden" name="data[Cart][product_id]" value="1819" id="CartProductId"/> <div class="row"> <div class="small-12 medium-12 large-12 columns"> <p>Add <input name="data[Cart][quantity]" placeholder="1" value="1" min="1" style="width:60px;display:inline" type="number" id="CartQuantity" required="required"/> <strong> DiaMag 0.2ml - magnetic rack</strong> to my shopping cart.</p> <div class="row"> <div class="small-6 medium-6 large-6 columns"> <button class="alert small button expand" onclick="$(this).addToCart('DiaMag 0.2ml - magnetic rack', 'B04000001', '225', $('#CartQuantity').val());" name="checkout" id="checkout" value="checkout" type="submit">Checkout</button> </div> <div class="small-6 medium-6 large-6 columns"> <button class="alert small button expand" onclick="$(this).addToCart('DiaMag 0.2ml - magnetic rack', 'B04000001', '225', $('#CartQuantity').val());" name="keepshop" id="keepshop" type="submit">Keep shopping</button> </div> </div> </div> </div> </form><a class="close-reveal-modal" aria-label="Close">×</a></div><!-- END: ADD TO CART MODAL --><a href="#" id="diamag02-magnetic-rack-1-unit" data-reveal-id="cartModal-1819" class="" style="color:#B21329"><i class="fa fa-cart-plus"></i></a> </div> </div> <div class="small-12 columns" > <h6 style="height:60px">DiaMag 0.2ml - magnetic rack</h6> </div> </div> </li> <li> <div class="row"> <div class="small-12 columns"> <a href="/en/p/h3k4me3-polyclonal-antibody-premium-50-ug-50-ul"><img src="/img/product/antibodies/ab-cuttag-icon.png" alt="cut and tag antibody icon" class="th"/></a> </div> <div class="small-12 columns"> <div class="small-6 columns" style="padding-left:0px;padding-right:0px;margin-top:-6px;margin-left:-1px"> <span class="success label" style="">C15410003-50</span> </div> <div class="small-6 columns text-right" style="padding-left:0px;padding-right:0px;margin-top:-6px"> <!--a href="#" style="color:#B21329"><i class="fa fa-info-circle"></i></a--> <!-- BEGIN: ADD TO CART MODAL --><div id="cartModal-2173" class="reveal-modal small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <form action="/en/carts/add/2173" id="CartAdd/2173Form" method="post" accept-charset="utf-8"><div style="display:none;"><input type="hidden" name="_method" value="POST"/></div><input type="hidden" name="data[Cart][product_id]" value="2173" id="CartProductId"/> <div class="row"> <div class="small-12 medium-12 large-12 columns"> <p>Add <input name="data[Cart][quantity]" placeholder="1" value="1" min="1" style="width:60px;display:inline" type="number" id="CartQuantity" required="required"/> <strong> H3K4me3 polyclonal antibody </strong> to my shopping cart.</p> <div class="row"> <div class="small-6 medium-6 large-6 columns"> <button class="alert small button expand" onclick="$(this).addToCart('H3K4me3 polyclonal antibody ', 'C15410003-50', '450', $('#CartQuantity').val());" name="checkout" id="checkout" value="checkout" type="submit">Checkout</button> </div> <div class="small-6 medium-6 large-6 columns"> <button class="alert small button expand" onclick="$(this).addToCart('H3K4me3 polyclonal antibody ', 'C15410003-50', '450', $('#CartQuantity').val());" name="keepshop" id="keepshop" type="submit">Keep shopping</button> </div> </div> </div> </div> </form><a class="close-reveal-modal" aria-label="Close">×</a></div><!-- END: ADD TO CART MODAL --><a href="#" id="h3k4me3-polyclonal-antibody-premium-50-ug-50-ul" data-reveal-id="cartModal-2173" class="" style="color:#B21329"><i class="fa fa-cart-plus"></i></a> </div> </div> <div class="small-12 columns" > <h6 style="height:60px">H3K4me3 Antibody</h6> </div> </div> </li> <li> <div class="row"> <div class="small-12 columns"> <a href="/en/p/h3k9me3-polyclonal-antibody-premium-50-mg"><img src="/img/product/antibodies/ab-cuttag-icon.png" alt="cut and tag antibody icon" class="th"/></a> </div> <div class="small-12 columns"> <div class="small-6 columns" style="padding-left:0px;padding-right:0px;margin-top:-6px;margin-left:-1px"> <span class="success label" style="">C15410193</span> </div> <div class="small-6 columns text-right" style="padding-left:0px;padding-right:0px;margin-top:-6px"> <!--a href="#" style="color:#B21329"><i class="fa fa-info-circle"></i></a--> <!-- BEGIN: ADD TO CART MODAL --><div id="cartModal-2264" class="reveal-modal small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <form action="/en/carts/add/2264" id="CartAdd/2264Form" method="post" accept-charset="utf-8"><div style="display:none;"><input type="hidden" name="_method" value="POST"/></div><input type="hidden" name="data[Cart][product_id]" value="2264" id="CartProductId"/> <div class="row"> <div class="small-12 medium-12 large-12 columns"> <p>Add <input name="data[Cart][quantity]" placeholder="1" value="1" min="1" style="width:60px;display:inline" type="number" id="CartQuantity" required="required"/> <strong> H3K9me3 Antibody</strong> to my shopping cart.</p> <div class="row"> <div class="small-6 medium-6 large-6 columns"> <button class="alert small button expand" onclick="$(this).addToCart('H3K9me3 Antibody', 'C15410193', '450', $('#CartQuantity').val());" name="checkout" id="checkout" value="checkout" type="submit">Checkout</button> </div> <div class="small-6 medium-6 large-6 columns"> <button class="alert small button expand" onclick="$(this).addToCart('H3K9me3 Antibody', 'C15410193', '450', $('#CartQuantity').val());" name="keepshop" id="keepshop" type="submit">Keep shopping</button> </div> </div> </div> </div> </form><a class="close-reveal-modal" aria-label="Close">×</a></div><!-- END: ADD TO CART MODAL --><a href="#" id="h3k9me3-polyclonal-antibody-premium-50-mg" data-reveal-id="cartModal-2264" class="" style="color:#B21329"><i class="fa fa-cart-plus"></i></a> </div> </div> <div class="small-12 columns" > <h6 style="height:60px">H3K9me3 Antibody</h6> </div> </div> </li> <li> <div class="row"> <div class="small-12 columns"> <a href="/en/p/h3k27me3-polyclonal-antibody-premium-50-mg-27-ml"><img src="/img/product/antibodies/ab-cuttag-icon.png" alt="cut and tag antibody icon" class="th"/></a> </div> <div class="small-12 columns"> <div class="small-6 columns" style="padding-left:0px;padding-right:0px;margin-top:-6px;margin-left:-1px"> <span class="success label" style="">C15410195</span> </div> <div class="small-6 columns text-right" style="padding-left:0px;padding-right:0px;margin-top:-6px"> <!--a href="#" style="color:#B21329"><i class="fa fa-info-circle"></i></a--> <!-- BEGIN: ADD TO CART MODAL --><div id="cartModal-2268" class="reveal-modal small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <form action="/en/carts/add/2268" id="CartAdd/2268Form" method="post" accept-charset="utf-8"><div style="display:none;"><input type="hidden" name="_method" value="POST"/></div><input type="hidden" name="data[Cart][product_id]" value="2268" id="CartProductId"/> <div class="row"> <div class="small-12 medium-12 large-12 columns"> <p>Add <input name="data[Cart][quantity]" placeholder="1" value="1" min="1" style="width:60px;display:inline" type="number" id="CartQuantity" required="required"/> <strong> H3K27me3 Antibody</strong> to my shopping cart.</p> <div class="row"> <div class="small-6 medium-6 large-6 columns"> <button class="alert small button expand" onclick="$(this).addToCart('H3K27me3 Antibody', 'C15410195', '450', $('#CartQuantity').val());" name="checkout" id="checkout" value="checkout" type="submit">Checkout</button> </div> <div class="small-6 medium-6 large-6 columns"> <button class="alert small button expand" onclick="$(this).addToCart('H3K27me3 Antibody', 'C15410195', '450', $('#CartQuantity').val());" name="keepshop" id="keepshop" type="submit">Keep shopping</button> </div> </div> </div> </div> </form><a class="close-reveal-modal" aria-label="Close">×</a></div><!-- END: ADD TO CART MODAL --><a href="#" id="h3k27me3-polyclonal-antibody-premium-50-mg-27-ml" data-reveal-id="cartModal-2268" class="" style="color:#B21329"><i class="fa fa-cart-plus"></i></a> </div> </div> <div class="small-12 columns" > <h6 style="height:60px">H3K27me3 Antibody</h6> </div> </div> </li> <li> <div class="row"> <div class="small-12 columns"> <a href="/en/p/h3k27ac-polyclonal-antibody-premium-50-mg-18-ml"><img src="/img/product/antibodies/ab-cuttag-icon.png" alt="cut and tag antibody icon" class="th"/></a> </div> <div class="small-12 columns"> <div class="small-6 columns" style="padding-left:0px;padding-right:0px;margin-top:-6px;margin-left:-1px"> <span class="success label" style="">C15410196</span> </div> <div class="small-6 columns text-right" style="padding-left:0px;padding-right:0px;margin-top:-6px"> <!--a href="#" style="color:#B21329"><i class="fa fa-info-circle"></i></a--> <!-- BEGIN: ADD TO CART MODAL --><div id="cartModal-2270" class="reveal-modal small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <form action="/en/carts/add/2270" id="CartAdd/2270Form" method="post" accept-charset="utf-8"><div style="display:none;"><input type="hidden" name="_method" value="POST"/></div><input type="hidden" name="data[Cart][product_id]" value="2270" id="CartProductId"/> <div class="row"> <div class="small-12 medium-12 large-12 columns"> <p>Add <input name="data[Cart][quantity]" placeholder="1" value="1" min="1" style="width:60px;display:inline" type="number" id="CartQuantity" required="required"/> <strong> H3K27ac Antibody</strong> to my shopping cart.</p> <div class="row"> <div class="small-6 medium-6 large-6 columns"> <button class="alert small button expand" onclick="$(this).addToCart('H3K27ac Antibody', 'C15410196', '450', $('#CartQuantity').val());" name="checkout" id="checkout" value="checkout" type="submit">Checkout</button> </div> <div class="small-6 medium-6 large-6 columns"> <button class="alert small button expand" onclick="$(this).addToCart('H3K27ac Antibody', 'C15410196', '450', $('#CartQuantity').val());" name="keepshop" id="keepshop" type="submit">Keep shopping</button> </div> </div> </div> </div> </form><a class="close-reveal-modal" aria-label="Close">×</a></div><!-- END: ADD TO CART MODAL --><a href="#" id="h3k27ac-polyclonal-antibody-premium-50-mg-18-ml" data-reveal-id="cartModal-2270" class="" style="color:#B21329"><i class="fa fa-cart-plus"></i></a> </div> </div> <div class="small-12 columns" > <h6 style="height:60px">H3K27ac Antibody</h6> </div> </div> </li> ' $related = array( 'id' => '2270', 'antibody_id' => '109', 'name' => 'H3K27ac Antibody', 'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone <strong>H3 containing the acetylated lysine 27</strong> (<strong>H3K27ac</strong>), using a KLH-conjugated synthetic peptide.</span></p>', 'label1' => 'Validation Data', 'info1' => '<div class="row"> <div class="small-6 columns">A.<img src="https://www.diagenode.com/img/product/antibodies/C15410196-ChIP-Fig1a.png" width="356" /><br /> B.<img src="https://www.diagenode.com/img/product/antibodies/C15410196-ChIP-Fig1b.png" width="356" /></div> <div class="small-6 columns"> <p><strong>Figure 1. ChIP results obtained with the Diagenode antibody directed against H3K27ac</strong></p> <p>Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H3K27ac (Cat. No. C15410196) and optimized PCR primer pairs for qPCR. ChIP was performed with the “Auto Histone ChIP-seq” kit on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 µg of antibody per ChIP experiment was analyzed. IgG (2 µg/IP) was used as a negative IP control. Quantitative PCR was performed with primers for the promoters of the active EIF4A2 and ACTB genes, used as positive controls, and for the inactive TSH2B and MYT1 genes, used as negative controls.</p> <p>Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H3K27ac (Cat. No. C15410196)and optimized PCR primer pairs for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. C01010051), using sheared chromatin from 100,000 cells. A titration consisting of 0.2, 0.5, 1 and 2 µg of antibody per ChIP experiment was analyzed. IgG (1 µg/IP) was used as a negative IP control. Quantitative PCR was performed with primers for the promoters of the active GAPDH and EIF4A2 genes, used as positive controls, and for the coding regions of the inactive MB and MYT1 genes, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis)</p> </div> </div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="row"> <div class="small-12 columns"><center> <p>A.<img src="https://www.diagenode.com/img/product/antibodies/C15410196-ChIP-Fig2a.png" /></p> </center><center> <p>B.<img src="https://www.diagenode.com/img/product/antibodies/C15410196-ChIP-Fig2b.png" /></p> </center><center> <p>C.<img src="https://www.diagenode.com/img/product/antibodies/C15410196-ChIP-Fig2c.png" /></p> </center></div> </div> <div class="row"> <div class="small-12 columns"> <p><strong>Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H3K27ac</strong></p> <p>ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 µg of the Diagenode antibody against H3K27ac (Cat. No. C15410196<span class="label-primary"></span>) as described above. The IP’d DNA was subsequently analysed on an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2A shows the peak distribution along the complete human X-chromosome. Figure 2 B and C show the peak distribution in two regions surrounding the EIF4A2 and GAPDH positive control genes, respectively. The position of the PCR amplicon, used for validating the ChIP assay is indicated with an arrow.</p> </div> </div> <div class="row"> <div class="small-12 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410196-fig3.jpg" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><strong>Figure 3. Cut&Tag results obtained with the Diagenode antibody directed against H3K27ac</strong></p> <p>CUT&TAG (Kaya-Okur, H.S., Nat Commun 10, 1930, 2019) was performed on 50,000 K562 cells using 1 µg of the Diagenode antibody against H3K27ac (cat. No. C15410196) and the Diagenode pA-Tn5 transposase (C01070001). The libraries were subsequently analysed on an Illumina NextSeq 500 sequencer (2x75 paired-end reads) according to the manufacturer's instructions. The tags were aligned to the human genome (hg19) using the BWA algorithm. Figure 3 shows the peak distribution in 2 genomic regions surrounding the EIF2S3 gene on the X-chromosome and the CCT5 gene on chromosome 5 (figure 3A and B, respectively).</p> </div> </div> <div class="row"> <div class="small-6 columns"><img src="https://www.diagenode.com/img/product/antibodies/C15410196-ELISA-Fig3.png" /></div> <div class="small-6 columns"> <p><strong>Figure 4. Determination of the antibody titer</strong></p> <p>To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H3K27ac (Cat. No. C15410196<span class="label-primary"></span>). The antigen used was a peptide containing the histone modification of interest. By plotting the absorbance against the antibody dilution (Figure 4), the titer of the antibody was estimated to be 1:8,300.</p> </div> </div> <div class="row"> <div class="small-4 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410196-DB-Fig4.png" /></center></div> <div class="small-8 columns"> <p><strong>Figure 5. Cross reactivity tests using the Diagenode antibody directed against H3K27ac</strong><br />To test the cross reactivity of the Diagenode antibody against H3K27ac (Cat. No. C15410196<span class="label-primary"></span>), a Dot Blot analysis was performed with peptides containing other histone modifications and the unmodified H3K27. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 5 shows a high specificity of the antibody for the modification of interest.</p> </div> </div> <div class="row"> <div class="small-4 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410196-WB-Fig5.png" /></center></div> <div class="small-8 columns"> <p><strong>Figure 6. Western blot analysis using the Diagenode antibody directed against H3K27ac</strong><br />Western blot was performed on whole cell (25 µg, lane 1) and histone extracts (15 µg, lane 2) from HeLa cells, and on 1 µg of recombinant histone H2A, H2B, H3 and H4 (lane 3, 4, 5 and 6, respectively) using the Diagenode antibody against H3K27ac (Cat. No. C1541196). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The marker (in kDa) is shown on the left.</p> </div> </div> <div class="row"> <div class="small-4 columns"><img src="https://www.diagenode.com/img/product/antibodies/C15410196-IF-Fig6.png" /></div> <div class="small-8 columns"> <p><strong>Figure 7. Immunofluorescence using the Diagenode antibody directed against H3K27ac</strong></p> <p>HeLa cells were stained with the Diagenode antibody against H3K27ac (Cat. No. C15410196<span class="label-primary"></span>) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/ TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H3K27ac antibody (top) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown at the bottom.</p> </div> </div>', 'label2' => 'Target Description', 'info2' => '<p style="text-align: justify;">Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of histone H3K27 is associated with active promoters and enhancers.</p>', 'label3' => '', 'info3' => '', 'format' => '50 μg', 'catalog_number' => 'C15410196', 'old_catalog_number' => 'pAb-196-050', 'sf_code' => 'C15410196-D001-000581', 'type' => 'FRE', 'search_order' => '03-Antibody', 'price_EUR' => '460', 'price_USD' => '450', 'price_GBP' => '410', 'price_JPY' => '67700', 'price_CNY' => '', 'price_AUD' => '1125', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => 'January 11, 2021', 'slug' => 'h3k27ac-polyclonal-antibody-premium-50-mg-18-ml', 'meta_title' => 'H3K27ac Antibody - ChIP-seq Grade (C15410196) | Diagenode', 'meta_keywords' => '', 'meta_description' => 'H3K27ac (Histone H3 acetylated at lysine 27) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, CUT&Tag, ELISA, DB, WB and IF. Batch-specific data available on the website. Sample size available. ', 'modified' => '2021-10-20 10:28:57', 'created' => '2015-06-29 14:08:20', 'ProductsRelated' => array( 'id' => '2693', 'product_id' => '1849', 'related_id' => '2270' ), 'Image' => array( (int) 0 => array( 'id' => '1815', 'name' => 'product/antibodies/ab-cuttag-icon.png', 'alt' => 'cut and tag antibody icon', 'modified' => '2021-02-11 12:45:34', 'created' => '2021-02-11 12:45:34', 'ProductsImage' => array( [maximum depth reached] ) ) ) ) $rrbs_service = array( (int) 0 => (int) 1894, (int) 1 => (int) 1895 ) $chipseq_service = array( (int) 0 => (int) 2683, (int) 1 => (int) 1835, (int) 2 => (int) 1836, (int) 3 => (int) 2684, (int) 4 => (int) 1838, (int) 5 => (int) 1839, (int) 6 => (int) 1856 ) $labelize = object(Closure) { } $old_catalog_number = '<br/><small><span style="color:#CCC">(kch-maglow-A48)</span></small>' $country_code = 'US' $label = '<img src="/img/banners/banner-customizer-back.png" alt=""/>' $document = array( 'id' => '37', 'name' => 'Chromatin Brochure', 'description' => '<p>Whether you are experienced or new to the field of chromatin immunoprecipitation, Diagenode has everything you need to make ChIP easy and convenient while ensuring consistent data between samples and experiments. As an expert in the field of epigenetics, Diagenode is committed to providing complete solutions from chromatin shearing reagents, shearing instruments such as the Bioruptor® (the gold standard for chromatin shearing), ChIP kits, the largest number of validated and trusted antibodies on the market, and the SX-8G IP-Star® Compact Automated System to achieve unparalleled productivity and reproducibility.</p>', 'image_id' => null, 'type' => 'Brochure', 'url' => 'files/brochures/Chromatin_Immunoprecipitation_Brochure.pdf', 'slug' => 'chromatin-immunoprecipitation-brochure', 'meta_keywords' => '', 'meta_description' => '', 'modified' => '2022-03-24 12:34:11', 'created' => '2015-07-03 16:05:27', 'ProductsDocument' => array( 'id' => '1108', 'product_id' => '1849', 'document_id' => '37' ) ) $sds = array( 'id' => '671', 'name' => 'LowCell ChIP kit protein A SDS JP ja', 'language' => 'ja', 'url' => 'files/SDS/LowCell-ChIP/SDS-C01010070-LowCell_ChIP_kit_protein_A-JP-ja-1_0.pdf', 'countries' => 'JP', 'modified' => '2020-07-01 17:10:05', 'created' => '2020-07-01 17:10:05', 'ProductsSafetySheet' => array( 'id' => '1237', 'product_id' => '1849', 'safety_sheet_id' => '671' ) ) $publication = array( 'id' => '2875', 'name' => 'An Insulator Element Located at the Cyclin B1 Interacting Protein 1 Gene Locus Is Highly Conserved among Mammalian Species', 'authors' => 'Yoshida W, Tomikawa J, Inaki M, Kimura H, Onodera M, Hata K, Nakabayashi K', 'description' => '<p>Insulators are <em>cis</em>-elements that control the direction of enhancer and silencer activities (enhancer-blocking) and protect genes from silencing by heterochromatinization (barrier activity). Understanding insulators is critical to elucidate gene regulatory mechanisms at chromosomal domain levels. Here, we focused on a genomic region upstream of the mouse <em>Ccnb1ip1</em> (cyclin B1 interacting protein 1) gene that was methylated in E9.5 embryos of the C57BL/6 strain, but unmethylated in those of the 129X1/SvJ and JF1/Ms strains. We hypothesized the existence of an insulator-type element that prevents the spread of DNA methylation within the 1.8 kbp segment, and actually identified a 242-bp and a 185-bp fragments that were located adjacent to each other and showed insulator and enhancer activities, respectively, in reporter assays. We designated these genomic regions as the <em>Ccnb1ip1</em> insulator and the <em>Ccnb1ip1</em> enhancer. The <em>Ccnb1ip1</em> insulator showed enhancer-blocking activity in the luciferase assays and barrier activity in the colony formation assays. Further examination of the <em>Ccnb1ip1</em> locus in other mammalian species revealed that the insulator and enhancer are highly conserved among a wide variety of species, and are located immediately upstream of the transcriptional start site of <em>Ccnb1ip1</em>. These newly identified cis-elements may be involved in transcriptional regulation of <em>Ccnb1ip1</em>, which is important in meiotic crossing-over and G2/M transition of the mitotic cell cycle.</p>', 'date' => '2015-06-25', 'pmid' => 'http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481373/', 'doi' => '10.1371/journal.pone.0131204', 'modified' => '2016-03-30 10:47:38', 'created' => '2016-03-30 10:47:38', 'ProductsPublication' => array( 'id' => '592', 'product_id' => '1849', 'publication_id' => '2875' ) ) $externalLink = ' <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481373/" target="_blank"><i class="fa fa-external-link"></i></a>'include - APP/View/Products/view.ctp, line 755 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 963 ProductsController::slug() - APP/Controller/ProductsController.php, line 1052 ReflectionMethod::invokeArgs() - [internal], line ?? Controller::invokeAction() - CORE/Cake/Controller/Controller.php, line 491 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 193 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 118
Notice (8): Undefined variable: header [APP/View/Products/view.ctp, line 755]Code Context<!-- BEGIN: REQUEST_FORM MODAL -->
<div id="request_formModal" class="reveal-modal medium" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog">
<?= $this->element('Forms/simple_form', array('solution_of_interest' => $solution_of_interest, 'header' => $header, 'message' => $message, 'campaign_id' => $campaign_id)) ?>
$viewFile = '/home/website-server/www/app/View/Products/view.ctp' $dataForView = array( 'language' => 'en', 'meta_keywords' => '', 'meta_description' => 'LowCell# ChIP kit protein A x48', 'meta_title' => 'LowCell# ChIP kit protein A x48', 'product' => array( 'Product' => array( 'id' => '1849', 'antibody_id' => null, 'name' => 'LowCell# ChIP kit protein A', 'description' => '<p>The LowCell# ChIP kit protein A is one of Diagenode old generation ChIP kits, still present in the catalogue. At present we highly recommend our new generation <strong>True MicroChIP kit</strong> with optimized reagents and protocol to enable successful <strong>ChIP/ChIP-seq</strong> on as few as <strong>10 000 cells</strong>. Read more about our <a href="https://www.diagenode.com/en/p/true-microchip-kit-x16-16-rxns">True MicroChIP kit</a>.</p> <p><span> </span></p>', 'label1' => 'Characteristics', 'info1' => '<p>The LowCell# ChIP kit has been validated using chromatin sheared by sonication using the Bioruptor<sup>®</sup>. The Kit includes a DNA purifying slurry for a fast method to purify your IP’d material (for qPCR analysis).</p>', 'label2' => '', 'info2' => '', 'label3' => '', 'info3' => '', 'format' => '48 rxns', 'catalog_number' => 'C01010072', 'old_catalog_number' => 'kch-maglow-A48', 'sf_code' => 'C01010072-', 'type' => 'RFR', 'search_order' => '04-undefined', 'price_EUR' => '1100', 'price_USD' => '1185', 'price_GBP' => '1005', 'price_JPY' => '188700', 'price_CNY' => '', 'price_AUD' => '2965', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => '0000-00-00', 'slug' => 'lowcell-chip-kit-protein-a-x48-48-rxns', 'meta_title' => 'LowCell# ChIP kit protein A x48', 'meta_keywords' => '', 'meta_description' => 'LowCell# ChIP kit protein A x48', 'modified' => '2019-05-17 11:02:05', 'created' => '2015-06-29 14:08:20', 'locale' => 'eng' ), 'Antibody' => array( 'host' => '*****', 'id' => null, 'name' => null, 'description' => null, 'clonality' => null, 'isotype' => null, 'lot' => null, 'concentration' => null, 'reactivity' => null, 'type' => null, 'purity' => null, 'classification' => null, 'application_table' => null, 'storage_conditions' => null, 'storage_buffer' => null, 'precautions' => null, 'uniprot_acc' => null, 'slug' => null, 'meta_keywords' => null, 'meta_description' => null, 'modified' => null, 'created' => null, 'select_label' => null ), 'Slave' => array( (int) 0 => array( [maximum depth reached] ) ), 'Group' => array( 'Group' => array( [maximum depth reached] ), 'Master' => array( [maximum depth reached] ), 'Product' => array( [maximum depth reached] ) ), 'Related' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ) ), 'Application' => array( (int) 0 => array( [maximum depth reached] ) ), 'Category' => array( (int) 0 => array( [maximum depth reached] ) ), 'Document' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ) ), 'Feature' => array(), 'Image' => array( (int) 0 => array( [maximum depth reached] ) ), 'Promotion' => array(), 'Protocol' => array(), 'Publication' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ), (int) 8 => array( [maximum depth reached] ), (int) 9 => array( [maximum depth reached] ), (int) 10 => array( [maximum depth reached] ), (int) 11 => array( [maximum depth reached] ), (int) 12 => array( [maximum depth reached] ), (int) 13 => array( [maximum depth reached] ), (int) 14 => array( [maximum depth reached] ), (int) 15 => array( [maximum depth reached] ), (int) 16 => array( [maximum depth reached] ), (int) 17 => array( [maximum depth reached] ), (int) 18 => array( [maximum depth reached] ), (int) 19 => array( [maximum depth reached] ), (int) 20 => array( [maximum depth reached] ), (int) 21 => array( [maximum depth reached] ), (int) 22 => array( [maximum depth reached] ), (int) 23 => array( [maximum depth reached] ), (int) 24 => array( [maximum depth reached] ), (int) 25 => array( [maximum depth reached] ), (int) 26 => array( [maximum depth reached] ), (int) 27 => array( [maximum depth reached] ), (int) 28 => array( [maximum depth reached] ), (int) 29 => array( [maximum depth reached] ), (int) 30 => array( [maximum depth reached] ) ), 'Testimonial' => array(), 'Area' => array(), 'SafetySheet' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ) ) ), 'meta_canonical' => 'https://www.diagenode.com/en/p/lowcell-chip-kit-protein-a-x48-48-rxns' ) $language = 'en' $meta_keywords = '' $meta_description = 'LowCell# ChIP kit protein A x48' $meta_title = 'LowCell# ChIP kit protein A x48' $product = array( 'Product' => array( 'id' => '1849', 'antibody_id' => null, 'name' => 'LowCell# ChIP kit protein A', 'description' => '<p>The LowCell# ChIP kit protein A is one of Diagenode old generation ChIP kits, still present in the catalogue. At present we highly recommend our new generation <strong>True MicroChIP kit</strong> with optimized reagents and protocol to enable successful <strong>ChIP/ChIP-seq</strong> on as few as <strong>10 000 cells</strong>. Read more about our <a href="https://www.diagenode.com/en/p/true-microchip-kit-x16-16-rxns">True MicroChIP kit</a>.</p> <p><span> </span></p>', 'label1' => 'Characteristics', 'info1' => '<p>The LowCell# ChIP kit has been validated using chromatin sheared by sonication using the Bioruptor<sup>®</sup>. The Kit includes a DNA purifying slurry for a fast method to purify your IP’d material (for qPCR analysis).</p>', 'label2' => '', 'info2' => '', 'label3' => '', 'info3' => '', 'format' => '48 rxns', 'catalog_number' => 'C01010072', 'old_catalog_number' => 'kch-maglow-A48', 'sf_code' => 'C01010072-', 'type' => 'RFR', 'search_order' => '04-undefined', 'price_EUR' => '1100', 'price_USD' => '1185', 'price_GBP' => '1005', 'price_JPY' => '188700', 'price_CNY' => '', 'price_AUD' => '2965', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => '0000-00-00', 'slug' => 'lowcell-chip-kit-protein-a-x48-48-rxns', 'meta_title' => 'LowCell# ChIP kit protein A x48', 'meta_keywords' => '', 'meta_description' => 'LowCell# ChIP kit protein A x48', 'modified' => '2019-05-17 11:02:05', 'created' => '2015-06-29 14:08:20', 'locale' => 'eng' ), 'Antibody' => array( 'host' => '*****', 'id' => null, 'name' => null, 'description' => null, 'clonality' => null, 'isotype' => null, 'lot' => null, 'concentration' => null, 'reactivity' => null, 'type' => null, 'purity' => null, 'classification' => null, 'application_table' => null, 'storage_conditions' => null, 'storage_buffer' => null, 'precautions' => null, 'uniprot_acc' => null, 'slug' => null, 'meta_keywords' => null, 'meta_description' => null, 'modified' => null, 'created' => null, 'select_label' => null ), 'Slave' => array( (int) 0 => array( 'id' => '96', 'name' => 'C01010072', 'product_id' => '1849', 'modified' => '2016-02-19 11:06:54', 'created' => '2016-02-19 11:06:54' ) ), 'Group' => array( 'Group' => array( 'id' => '96', 'name' => 'C01010072', 'product_id' => '1849', 'modified' => '2016-02-19 11:06:54', 'created' => '2016-02-19 11:06:54' ), 'Master' => array( 'id' => '1849', 'antibody_id' => null, 'name' => 'LowCell# ChIP kit protein A', 'description' => '<p>The LowCell# ChIP kit protein A is one of Diagenode old generation ChIP kits, still present in the catalogue. At present we highly recommend our new generation <strong>True MicroChIP kit</strong> with optimized reagents and protocol to enable successful <strong>ChIP/ChIP-seq</strong> on as few as <strong>10 000 cells</strong>. Read more about our <a href="https://www.diagenode.com/en/p/true-microchip-kit-x16-16-rxns">True MicroChIP kit</a>.</p> <p><span> </span></p>', 'label1' => 'Characteristics', 'info1' => '<p>The LowCell# ChIP kit has been validated using chromatin sheared by sonication using the Bioruptor<sup>®</sup>. The Kit includes a DNA purifying slurry for a fast method to purify your IP’d material (for qPCR analysis).</p>', 'label2' => '', 'info2' => '', 'label3' => '', 'info3' => '', 'format' => '48 rxns', 'catalog_number' => 'C01010072', 'old_catalog_number' => 'kch-maglow-A48', 'sf_code' => 'C01010072-', 'type' => 'RFR', 'search_order' => '04-undefined', 'price_EUR' => '1100', 'price_USD' => '1185', 'price_GBP' => '1005', 'price_JPY' => '188700', 'price_CNY' => '', 'price_AUD' => '2965', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => '0000-00-00', 'slug' => 'lowcell-chip-kit-protein-a-x48-48-rxns', 'meta_title' => 'LowCell# ChIP kit protein A x48', 'meta_keywords' => '', 'meta_description' => 'LowCell# ChIP kit protein A x48', 'modified' => '2019-05-17 11:02:05', 'created' => '2015-06-29 14:08:20' ), 'Product' => array( (int) 0 => array( [maximum depth reached] ) ) ), 'Related' => array( (int) 0 => array( 'id' => '1787', 'antibody_id' => null, 'name' => 'Bioruptor<sup>®</sup> Pico sonication device', 'description' => '<p><a href="https://go.diagenode.com/bioruptor-upgrade"><img src="https://www.diagenode.com/img/banners/banner-br-trade.png" /></a></p> <p>The Bioruptor® Pico (2013-2019) represented a breakthrough for shearing micro-volumes of 5 μl to larger volumes of up to 2 ml. <span>The new generation keeps the features you like the most and bring even more innovation. Check it now:</span></p> <center><span></span></center><center><a href="https://www.diagenode.com/p/bioruptorpico2"> <img alt="New Bioruptor Pico" src="https://www.diagenode.com/img/product/shearing_technologies/new-pico-product-banner.jpg" /></a></center> <p></p> <p><span>Watch our short video about the Bioruptor Pico and how it can help you accomplish perfect shearing for any application including chromatin shearing, DNA shearing for NGS, unmatched DNA extraction from FFPE samples, RNA shearing, protein extraction, and much more.</span></p> <p> <script>// <![CDATA[ (function(){var qs,js,q,s,d=document,gi=d.getElementById,ce=d.createElement,gt=d.getElementsByTagName,id='typef_orm',b='https://s3-eu-west-1.amazonaws.com/share.typeform.com/';if(!gi.call(d,id)){js=ce.call(d,'script');js.id=id;js.src=b+'share.js';q=gt.call(d,'script')[0];q.parentNode.insertBefore(js,q)}id=id+'_';if(!gi.call(d,id)){qs=ce.call(d,'link');qs.rel='stylesheet';qs.id=id;qs.href=b+'share-button.css';s=gt.call(d,'head')[0];s.appendChild(qs,s)}})() // ]]></script> </p> <center><iframe width="560" height="315" src="https://www.youtube.com/embed/ckLc4owudIM" frameborder="0" allowfullscreen="allowfullscreen"></iframe></center><center> <p></p> </center><center><a href="https://www.diagenode.com/en/pages/osha"><img src="https://www.diagenode.com/img/banners/banner-osha-580.jpg" width="635" height="243" /></a></center> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div>', 'label1' => 'User manual ', 'info1' => '<p><a href="https://www.diagenode.com/files/products/shearing_technology/bioruptor/Bioruptor_pico_cooler_manual.pdf">Download</a></p> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div>', 'label2' => 'Recommended settings for DNA shearing with Bioruptor® Pico', 'info2' => '<p>Follow our guidelines and find the good parameters for your expected DNA size: <a href="https://pybrevet.typeform.com/to/o8cQfM">DNA shearing with the Bioruptor® Pico</a></p> <p></p> <p> <script>// <![CDATA[ (function(){var qs,js,q,s,d=document,gi=d.getElementById,ce=d.createElement,gt=d.getElementsByTagName,id='typef_orm',b='https://s3-eu-west-1.amazonaws.com/share.typeform.com/';if(!gi.call(d,id)){js=ce.call(d,'script');js.id=id;js.src=b+'share.js';q=gt.call(d,'script')[0];q.parentNode.insertBefore(js,q)}id=id+'_';if(!gi.call(d,id)){qs=ce.call(d,'link');qs.rel='stylesheet';qs.id=id;qs.href=b+'share-button.css';s=gt.call(d,'head')[0];s.appendChild(qs,s)}})() // ]]></script> </p> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div>', 'label3' => 'Available chromatin shearing kits', 'info3' => '<p>It is important to establish optimal conditions to shear crosslinked chromatin to get the correct fragment sizes needed for ChIP. Usually this process requires both optimizing sonication conditions as well as optimizing SDS concentration, which is laborious. With the Chromatin Shearing Optimization Kits, optimization is fast and easy - we provide optimization reagents with varying concentrations of SDS. Moreover, our Chromatin Shearing Optimization Kits can be used for the optimization of chromatin preparation with our kits for ChIP.</p> <table style="width: 925px;"> <tbody> <tr valign="middle"> <td style="width: 213px;"></td> <td style="text-align: center; width: 208px;"><strong><a href="../p/chromatin-shearing-optimization-kit-low-sds-100-million-cells">Chromatin Shearing Kit Low SDS (for Histones)</a></strong></td> <td style="text-align: center; width: 180px;"><strong><a href="../p/chromatin-shearing-optimization-kit-low-sds-for-tfs-25-rxns">Chromatin Shearing Kit Low SDS (for TF)</a></strong></td> <td style="text-align: center; width: 154px;"><strong><a href="../p/chromatin-shearing-optimization-kit-high-sds-100-million-cells">Chromatin Shearing Kit High SDS</a></strong></td> <td style="text-align: center; width: 155px;"><strong><a href="../p/chromatin-shearing-plant-chip-seq-kit">Chromatin Shearing Kit (for Plant)</a></strong></td> </tr> <tr style="background-color: #fff;" valign="middle"> <td style="width: 213px;"> <p style="text-align: left;"><strong>SDS concentration</strong></p> </td> <td style="text-align: center; width: 208px;"> <p style="text-align: center;">< 0.1%</p> </td> <td style="text-align: center; width: 180px;"> <p style="text-align: center;">0.2%</p> </td> <td style="text-align: center; width: 154px;"> <p style="text-align: center;">1%</p> </td> <td style="text-align: center; width: 155px;"> <p style="text-align: center;">0.5%</p> </td> </tr> <tr style="background-color: #fff;" valign="middle"> <td style="width: 213px;"> <p style="text-align: left;"><strong>Nuclei isolation</strong></p> </td> <td style="text-align: center; width: 208px;"> <p style="text-align: center;">Yes</p> </td> <td style="text-align: center; width: 180px;"> <p style="text-align: center;">Yes</p> </td> <td style="text-align: center; width: 154px;"> <p style="text-align: center;">No</p> </td> <td style="text-align: center; width: 155px;"> <p style="text-align: center;">Yes</p> </td> </tr> <tr style="background-color: #fff;" valign="middle"> <td style="width: 213px;"> <p style="text-align: left;"><strong>Allows for shearing of... cells/tissue</strong></p> </td> <td style="text-align: center; width: 208px;"> <p style="text-align: center;">100 million cells</p> </td> <td style="text-align: center; width: 180px;"> <p style="text-align: center;">100 million cells</p> </td> <td style="text-align: center; width: 154px;"> <p style="text-align: center;">100 million cells</p> </td> <td style="text-align: center; width: 155px;"> <p style="text-align: center;">up to 25 g of tissue</p> </td> </tr> <tr style="background-color: #fff;" valign="middle"> <td style="width: 213px;"> <p style="text-align: left;"><strong>Corresponding to shearing buffers from</strong></p> </td> <td style="text-align: center; width: 208px;"> <p style="text-align: center;"><a href="../p/ideal-chip-seq-kit-x24-24-rxns">iDeal ChIP-seq kit for Histones</a></p> <p style="text-align: center;"><a href="https://www.diagenode.com/en/p/manual-chipmentation-kit-for-histones-24-rxns">ChIPmentation Kit for Histones</a></p> </td> <td style="text-align: center; width: 180px;"> <p style="text-align: center;"><a href="../p/ideal-chip-seq-kit-for-transcription-factors-x24-24-rxns">iDeal ChIP-seq Kit for Transcription Factors</a></p> <p style="text-align: center;"><a href="../p/ideal-chip-qpcr-kit">iDeal ChIP qPCR kit</a></p> </td> <td style="text-align: center; width: 154px;"> <p style="text-align: center;"><a href="../p/true-microchip-kit-x16-16-rxns">True MicroChIP kit</a></p> </td> <td style="text-align: center; width: 155px;"> <p style="text-align: center;"><a href="../p/universal-plant-chip-seq-kit-x24-24-rxns">Universal Plant <br />ChIP-seq kit</a></p> </td> </tr> </tbody> </table> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div>', 'format' => '1 unit', 'catalog_number' => 'B01060010', 'old_catalog_number' => '', 'sf_code' => 'B01060010-', 'type' => 'ACC', 'search_order' => '00-Machine', 'price_EUR' => '22700', 'price_USD' => '26250', 'price_GBP' => '20150', 'price_JPY' => '3291500', 'price_CNY' => 'Discontinued', 'price_AUD' => '65625', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => true, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => '0000-00-00', 'slug' => 'bioruptor-pico-sonication-device', 'meta_title' => 'Bioruptor® Pico sonication device for RNA,Chromatin and DNA shearing for Next-Generation-Sequencing | Diagenode', 'meta_keywords' => 'Bioruptor, sonication, Next-Generation-Sequencing,DNA shearing,Protein extraction', 'meta_description' => 'An all-in-one shearing system Ideal for DNA shearing for Next-Generation-Sequencing,Chromatin shearing,RNA shearing,Protein extraction from tissues and cells and FFPE DNA extraction', 'modified' => '2021-07-14 13:47:33', 'created' => '2015-06-29 14:08:20', 'ProductsRelated' => array( [maximum depth reached] ), 'Image' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '1819', 'antibody_id' => null, 'name' => 'DiaMag 0.2ml - magnetic rack', 'description' => '<p>The DiaMag02 is a powerful magnet which has been designed for controlled and rapid isolation of your DNA bound to magnetic beads. It allows for processing 16 samples at a time.</p>', 'label1' => '', 'info1' => '', 'label2' => '', 'info2' => '', 'label3' => '', 'info3' => '', 'format' => '1 unit', 'catalog_number' => 'B04000001', 'old_catalog_number' => 'kch-816-001', 'sf_code' => 'B04000001-', 'type' => 'ACC', 'search_order' => '04-undefined', 'price_EUR' => '230', 'price_USD' => '225', 'price_GBP' => '205', 'price_JPY' => '40700', 'price_CNY' => '', 'price_AUD' => '565', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => '0000-00-00', 'slug' => 'diamag02-magnetic-rack-1-unit', 'meta_title' => 'DiaMag02 - magnetic rack', 'meta_keywords' => '', 'meta_description' => 'DiaMag02 - magnetic rack', 'modified' => '2019-06-11 16:27:35', 'created' => '2015-06-29 14:08:20', 'ProductsRelated' => array( [maximum depth reached] ), 'Image' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '2173', 'antibody_id' => '115', 'name' => 'H3K4me3 polyclonal antibody ', 'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone H3 containing the trimethylated lysine 4 (H3K4me3), using a KLH-conjugated synthetic peptide.</span></p> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script>', 'label1' => 'Validation Data', 'info1' => '<div class="row"> <div class="small-6 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig1-ChIP.jpg" /></center></div> <div class="small-6 columns"> <p><small><strong>Figure 1. ChIP results obtained with the Diagenode antibody directed against H3K4me3</strong><br />ChIP assays were performed using human K562 cells, the Diagenode antibody against H3K4me3 (cat. No. C15410003) and optimized PCR primer pairs for qPCR. ChIP was performed with the iDeal ChIP-seq kit (cat. No. C01010051), using sheared chromatin from 500,000 cells. A titration consisting of 0.5, 1, 2 and 5 µg of antibody per ChIP experiment was analyzed. IgG (1 µg/IP) was used as a negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes GAPDH and EIF4A2, used as positive controls, and for the inactive MYOD1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p> </div> </div> <div class="row"> <div class="small-12 columns"><center>A.<img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig2a-ChIP-seq.jpg" width="800" /></center><center>B.<img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig2b-ChIP-seq.jpg" width="800" /></center><center>C.<img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig2c-ChIP-seq.jpg" width="800" /></center><center>D.<img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig2d-ChIP-seq.jpg" width="800" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H3K4me3</strong><br />ChIP was performed on sheared chromatin from 1 million HeLaS3 cells using 1 µg of the Diagenode antibody against H3K4me3 (cat. No. C15410003) as described above. The IP'd DNA was subsequently analysed on an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer's instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 600 kb region of the X-chromosome (figure 2A and B) and in two regions surrounding the GAPDH and EIF4A2 positive control genes, respectively (figure 2C and D). These results clearly show an enrichment of the H3K4 trimethylation at the promoters of active genes.</small></p> </div> </div> <div class="row"> <div class="small-12 columns"><center>A.<img src="https://www.diagenode.com/img/product/antibodies/C15410003-cuttag-a.png" width="800" /></center></div> <div class="small-12 columns"><center>B.<img src="https://www.diagenode.com/img/product/antibodies/C15410003-cuttag-b.png" width="800" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 3. Cut&Tag results obtained with the Diagenode antibody directed against H3K4me3</strong><br />CUT&TAG (Kaya-Okur, H.S., Nat Commun 10, 1930, 2019) was performed on 50,000 K562 cells using 0.5 µg of the Diagenode antibody against H3K4me3 (cat. No. C15410003) and the Diagenode pA-Tn5 transposase (C01070001). The libraries were subsequently analysed on an Illumina NextSeq 500 sequencer (2x75 paired-end reads) according to the manufacturer's instructions. The tags were aligned to the human genome (hg19) using the BWA algorithm. Figure 3 shows the peak distribution in 2 genomic regions surrounding the FOS gene on chromosome 14 and the ACTB gene on chromosome 7 (figure 3A and B, respectively).</small></p> </div> </div> <div class="row"> <div class="small-6 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig3-ELISA.jpg" width="350" /></center><center></center><center></center><center></center><center></center></div> <div class="small-6 columns"> <p><small><strong>Figure 4. Determination of the antibody titer</strong><br />To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H3K4me3 (cat. No. C15410003). The antigen used was a peptide containing the histone modification of interest. By plotting the absorbance against the antibody dilution (Figure 4), the titer of the antibody was estimated to be 1:11,000.</small></p> </div> </div> <div class="row"> <div class="small-6 columns"><img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig4-DB.jpg" /></div> <div class="small-6 columns"> <p><small><strong>Figure 5. Cross reactivity tests using the Diagenode antibody directed against H3K4me3</strong><br />To test the cross reactivity of the Diagenode antibody against H3K4me3 (cat. No. C15410003), a Dot Blot analysis was performed with peptides containing other histone modifications and the unmodified H3K4. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:2,000. Figure 5A shows a high specificity of the antibody for the modification of interest.</small></p> </div> </div> <div class="row"> <div class="small-4 columns"><img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig5-WB.jpg" /></div> <div class="small-8 columns"> <p><small><strong>Figure 6. Western blot analysis using the Diagenode antibody directed against H3K4me3</strong><br />Western blot was performed on whole cell extracts (40 µg, lane 1) from HeLa cells, and on 1 µg of recombinant histone H3 (lane 2) using the Diagenode antibody against H3K4me3 (cat. No. C15410003). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right; the marker (in kDa) is shown on the left.</small></p> </div> </div> <div class="row"> <div class="small-12 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig6-if.jpg" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 7. Immunofluorescence using the Diagenode antibody directed against H3K4me3</strong><br />HeLa cells were stained with the Diagenode antibody against H3K4me3 (cat. No. C15410003) and with DAPI. Cells were fixed with 4% formaldehyde for 20’ and blocked with PBS/TX-100 containing 5% normal goat serum. The cells were immunofluorescently labelled with the H3K4me3 antibody (left) diluted 1:200 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa568 or with DAPI (middle), which specifically labels DNA. The right picture shows a merge of both stainings.</small></p> </div> </div> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script>', 'label2' => '', 'info2' => '<p>Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called "histone code". Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Methylation of histone H3K4 is associated with activation of gene transcription.</p> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script>', 'label3' => '', 'info3' => '<p></p> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script>', 'format' => '50 µg', 'catalog_number' => 'C15410003-50', 'old_catalog_number' => 'pAb-003-050', 'sf_code' => 'C15410003-D001-000581', 'type' => 'FRE', 'search_order' => '03-Antibody', 'price_EUR' => '460', 'price_USD' => '450', 'price_GBP' => '410', 'price_JPY' => '67700', 'price_CNY' => '', 'price_AUD' => '1125', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => 'January 8, 2021', 'slug' => 'h3k4me3-polyclonal-antibody-premium-50-ug-50-ul', 'meta_title' => 'H3K4me3 polyclonal antibody - Premium', 'meta_keywords' => '', 'meta_description' => 'H3K4me3 polyclonal antibody - Premium', 'modified' => '2022-06-29 14:42:46', 'created' => '2015-06-29 14:08:20', 'ProductsRelated' => array( [maximum depth reached] ), 'Image' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '2264', 'antibody_id' => '121', 'name' => 'H3K9me3 Antibody', 'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone<strong> H3 containing the trimethylated lysine 9</strong> (<strong>H3K9me3</strong>), using a KLH-conjugated synthetic peptide.</span></p>', 'label1' => 'Validation Data', 'info1' => '<div class="row"> <div class="small-6 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410193-ChIP-Fig1.png" /></center></div> <div class="small-6 columns"> <p><small><strong>Figure 1. ChIP results obtained with the Diagenode antibody directed against H3K9me3</strong><br />ChIP assays were performed using human HeLa cells, the Diagenode antibody against H3K9me3 (cat. No. C15410193) and optimized PCR primer sets for qPCR. ChIP was performed on sheared chromatin from 1 million HeLaS3 cells using the “iDeal ChIP-seq” kit (cat. No. C01010051). A titration of the antibody consisting of 0.5, 1, 2, and 5 µg per ChIP experiment was analysed. IgG (1 µg/IP) was used as negative IP control. QPCR was performed with primers for the heterochromatin marker Sat2 and for the ZNF510 gene, used as positive controls, and for the promoters of the active EIF4A2 and GAPDH genes, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis).</small></p> </div> </div> <div class="row"> <div class="small-12 columns"><center>A.<img src="https://www.diagenode.com/img/product/antibodies/C15410193-ChIP-Fig2a.png" width="700" /></center><center>B.<img src="https://www.diagenode.com/img/product/antibodies/C15410193-ChIP-Fig2b.png" width="700" /></center><center>C.<img src="https://www.diagenode.com/img/product/antibodies/C15410193-ChIP-Fig2c.png" width="700" /></center><center>D.<img src="https://www.diagenode.com/img/product/antibodies/C15410193-ChIP-Fig2d.png" width="700" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H3K9me3</strong><br />ChIP was performed with 0.5 µg of the Diagenode antibody against H3K9me3 (cat. No. C15410193) on sheared chromatin from 1,000,000 HeLa cells using the “iDeal ChIP-seq” kit as described above. The IP'd DNA was subsequently analysed on an Illumina HiSeq 2000. Library preparation, cluster generation and sequencing were performed according to the manufacturer's instructions. The 50 bp tags were aligned to the human genome using the BWA algorithm. Figure 2A shows the signal distribution along the long arm of chromosome 19 and a zoomin to an enriched region containing several ZNF repeat genes. The arrows indicate two satellite repeat regions which exhibit a stronger signal. Figures 2B, 2C and 2D show the enrichment along the ZNF510 positive control target and at the H19 and KCNQ1 imprinted genes.</small></p> </div> </div> <div class="row"> <div class="small-12 columns"><center>A.<img src="https://www.diagenode.com/img/product/antibodies/C15410193-CT-Fig3a.png" width="700" /></center><center>B.<img src="https://www.diagenode.com/img/product/antibodies/C15410193-CT-Fig3b.png" width="700" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 3. Cut&Tag results obtained with the Diagenode antibody directed against H3K9me3</strong><br />CUT&TAG (Kaya-Okur, H.S., Nat Commun 10, 1930, 2019) was performed on 50,000 K562 cells using 1 µg of the Diagenode antibody against H3K9me3 (cat. No. C15410193) and the Diagenode pA-Tn5 transposase (C01070001). The libraries were subsequently analysed on an Illumina NextSeq 500 sequencer (2x75 paired-end reads) according to the manufacturer's instructions. The tags were aligned to the human genome (hg19) using the BWA algorithm. Figure 3 shows the peak distribution in a genomic regions on chromosome 1 containing several ZNF repeat genes and in a genomic region surrounding the KCNQ1 imprinting control gene on chromosome 11 (figure 3A and B, respectively).</small></p> </div> </div> <div class="row"> <div class="small-6 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410193-Elisa-Fig4.png" /></center></div> <div class="small-6 columns"> <p><small><strong>Figure 4. Determination of the antibody titer</strong><br />To determine the titer of the antibody, an ELISA was performed using a serial dilution of the antibody directed against human H3K9me3 (cat. No. C15410193) in antigen coated wells. The antigen used was a peptide containing the histone modification of interest. By plotting the absorbance against the antibody dilution (Figure 4), the titer of the antibody was estimated to be 1:87,000.</small></p> </div> </div> <div class="row"> <div class="small-4 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410193-DB-Fig5.png" /></center></div> <div class="small-8 columns"> <p><small><strong>Figure 5. Cross reactivity tests using the Diagenode antibody directed against H3K9me3</strong><br />A Dot Blot analysis was performed to test the cross reactivity of the Diagenode antibody against H3K9me3 (cat. No. C15410193) with peptides containing other modifications and unmodified sequences of histone H3 and H4. One hundred to 0.2 pmol of the peptide containing the respective histone modification were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 5 shows a high specificity of the antibody for the modification of interest.</small></p> </div> </div> <div class="row"> <div class="small-4 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410193-WB-Fig6.png" /></center></div> <div class="small-8 columns"> <p><small><strong>Figure 6. Western blot analysis using the Diagenode antibody directed against H3K9me3</strong><br />Western blot was performed on whole cell (25 µg, lane 1) and histone extracts (15 µg, lane 2) from HeLa cells, and on 1 µg of recombinant histone H2A, H2B, H3 and H4 (lane 3, 4, 5 and 6, respectively) using the Diagenode antibody against H3K9me3 (cat. No. C15410193). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right; the marker (in kDa) is shown on the left.</small></p> </div> </div> <div class="row"> <div class="small-12 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410193-IF-Fig7.png" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 7. Immunofluorescence using the Diagenode antibody directed against H3K9me3</strong><br />HeLa cells were stained with the Diagenode antibody against H3K9me3 (cat. No. C15410193) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labelled with the H3K9me3 antibody (middle) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The left panel shows staining of the nuclei with DAPI. A merge of both stainings is shown on the right.</small></p> </div> </div>', 'label2' => 'Target Description', 'info2' => '<p>Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Trimethylation of histone H3K9 is associated with inactive genomic regions, satellite repeats and ZNF gene repeats.</p>', 'label3' => '', 'info3' => '', 'format' => '50 μg', 'catalog_number' => 'C15410193', 'old_catalog_number' => 'pAb-193-050', 'sf_code' => 'C15410193-D001-000581', 'type' => 'FRE', 'search_order' => '03-Antibody', 'price_EUR' => '460', 'price_USD' => '450', 'price_GBP' => '410', 'price_JPY' => '67700', 'price_CNY' => '0', 'price_AUD' => '1125', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => 'December 12, 2017', 'slug' => 'h3k9me3-polyclonal-antibody-premium-50-mg', 'meta_title' => 'H3K9me3 Antibody - ChIP-seq Grade (C15410193) | Diagenode', 'meta_keywords' => '', 'meta_description' => 'H3K9me3 (Histone H3 trimethylated at lysine 9) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, CUT&Tag, ELISA, DB, WB and IF. Specificity confirmed by Peptide array assay. Batch-specific data available on the website. Sample size available.', 'modified' => '2021-10-20 09:55:53', 'created' => '2015-06-29 14:08:20', 'ProductsRelated' => array( [maximum depth reached] ), 'Image' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '2268', 'antibody_id' => '70', 'name' => 'H3K27me3 Antibody', 'description' => '<p>Polyclonal antibody raised in rabbit against the region of histone <strong>H3 containing the trimethylated lysine 27</strong> (<strong>H3K27me3</strong>), using a KLH-conjugated synthetic peptide.</p>', 'label1' => 'Validation Data', 'info1' => '<div class="row"> <div class="small-6 columns"> <p>A. <img src="https://www.diagenode.com/img/product/antibodies/C15410195-ChIP-Fig1.png" alt="H3K27me3 Antibody ChIP Grade" /></p> <p>B. <img src="https://www.diagenode.com/img/product/antibodies/C15410195-ChIP-Fig2.png" alt="H3K27me3 Antibody for ChIP" /></p> </div> <div class="small-6 columns"> <p><small><strong>Figure 1. ChIP results obtained with the Diagenode antibody directed against H3K27me3</strong><br />ChIP assays were performed using human HeLa cells, the Diagenode antibody against H3K27me3 (Cat. No. C15410195) and optimized PCR primer pairs for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. C01010051), using sheared chromatin from 1 million cells. The chromatin was spiked with a panel of in vitro assembled nucleosomes, each containing a specific lysine methylation. A titration consisting of 0.5, 1, 2 and 5 µg of antibody per ChIP experiment was analyzed. IgG (1 µg/IP) was used as a negative IP control.</small></p> <p><small><strong>Figure 1A.</strong> Quantitative PCR was performed with primers specific for the promoter of the active GAPDH and EIF4A2 genes, used as negative controls, and for the inactive TSH2B and MYT1 genes, used as positive controls. The graph shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis).</small></p> <p><small><strong>Figure 1B.</strong> Recovery of the nucleosomes carrying the H3K27me1, H3K27me2, H3K27me3, H3K4me3, H3K9me3 and H3K36me3 modifications and the unmodified H3K27 as determined by qPCR. The figure clearly shows the antibody is very specific in ChIP for the H3K27me3 modification.</small></p> </div> </div> <div class="row"> <div class="small-12 columns"> <p>A. <img src="https://www.diagenode.com/img/product/antibodies/C15410195-ChIP-Fig2a.png" alt="H3K27me3 Antibody ChIP-seq Grade" /></p> </div> </div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="row"> <div class="small-12 columns"> <p>B. <img src="https://www.diagenode.com/img/product/antibodies/C15410195-ChIP-Fig2b.png" alt="H3K27me3 Antibody for ChIP-seq" /></p> <p>C. <img src="https://www.diagenode.com/img/product/antibodies/C15410195-ChIP-Fig2c.png" alt="H3K27me3 Antibody for ChIP-seq assay" /></p> <p>D. <img src="https://www.diagenode.com/img/product/antibodies/C15410195-ChIP-Fig2d.png" alt="H3K27me3 Antibody validated in ChIP-seq" /></p> </div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H3K27me3</strong><br />ChIP was performed on sheared chromatin from 1 million HeLa cells using 1 µg of the Diagenode antibody against H3K27me3 (Cat. No. C15410195) as described above. The IP'd DNA was subsequently analysed on an Illumina HiSeq. Library preparation, cluster generation and sequencing were performed according to the manufacturer's instructions. The 50 bp tags were aligned to the human genome using the BWA algorithm. Figure 2 shows the enrichment in genomic regions of chromosome 6 and 20, surrounding the TSH2B and MYT1 positive control genes (fig 2A and 2B, respectively), and in two genomic regions of chromosome 1 and X (figure 2C and D).</small></p> </div> </div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="row"> <div class="small-12 columns"> <p>A. <img src="https://www.diagenode.com/img/product/antibodies/C15410195-CUTTAG-Fig3A.png" /></p> <p>B. <img src="https://www.diagenode.com/img/product/antibodies/C15410195-CUTTAG-Fig3B.png" /></p> </div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 3. Cut&Tag results obtained with the Diagenode antibody directed against H3K27me3</strong><br />CUT&TAG (Kaya-Okur, H.S., Nat Commun 10, 1930, 2019) was performed on 50,000 K562 cells using 1 µg of the Diagenode antibody against H3K27me3 (cat. No. C15410195) and the Diagenode pA-Tn5 transposase (C01070001). The libraries were subsequently analysed on an Illumina NextSeq 500 sequencer (2x75 paired-end reads) according to the manufacturer's instructions. The tags were aligned to the human genome (hg19) using the BWA algorithm. Figure 3 shows the peak distribution in 2 genomic regions on chromosome and 13 and 20 (figure 3A and B, respectively).</small></p> </div> </div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="row"> <div class="small-6 columns"> <p><img src="https://www.diagenode.com/img/product/antibodies/C15410195-ELISA-Fig4.png" alt="H3K27me3 Antibody ELISA Validation " /></p> </div> <div class="small-6 columns"> <p><small><strong>Figure 4. Determination of the antibody titer</strong><br />To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody directed against H3K27me3 (Cat. No. C15410195). The antigen used was a peptide containing the histone modification of interest. By plotting the absorbance against the antibody dilution (Figure 4), the titer of the antibody was estimated to be 1:3,000.</small></p> </div> </div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="row"> <div class="small-6 columns"> <p><img src="https://www.diagenode.com/img/product/antibodies/C15410195-DB-Fig5a.png" alt="H3K27me3 Antibody Dot Blot Validation " /></p> </div> <div class="small-6 columns"> <p><small><strong>Figure 5. Cross reactivity tests using the Diagenode antibody directed against H3K27me3</strong><br />A Dot Blot analysis was performed to test the cross reactivity of the Diagenode antibody against H3K27me3 (Cat. No. C15410195) with peptides containing other modifications of histone H3 and H4 and the unmodified H3K27 sequence. One hundred to 0.2 pmol of the peptide containing the respective histone modification were spotted on a membrane. The antibody was used at a dilution of 1:5,000. Figure 5 shows a high specificity of the antibody for the modification of interest. Please note that the antibody also recognizes the modification if S28 is phosphorylated.</small></p> </div> </div> <div class="row"> <div class="small-6 columns"> <p><img src="https://www.diagenode.com/img/product/antibodies/C15410195-WB-Fig6.png" alt="H3K27me3 Antibody validated in Western Blot" /></p> </div> <div class="small-6 columns"> <p><small><strong>Figure 6. Western blot analysis using the Diagenode antibody directed against H3K27me3</strong><br />Western blot was performed on whole cell (25 µg, lane 1) and histone extracts (15 µg, lane 2) from HeLa cells, and on 1 µg of recombinant histone H2A, H2B, H3 and H4 (lane 3, 4, 5 and 6, respectively) using the Diagenode antibody against H3K27me3 (cat. No. C15410195) diluted 1:500 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right; the marker (in kDa) is shown on the left.</small></p> </div> </div> <div class="row"> <div class="small-12 columns"> <p><img src="https://www.diagenode.com/img/product/antibodies/C15410195-IF-Fig7.png" alt="H3K27me3 Antibody validated for Immunofluorescence" /></p> </div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 7. Immunofluorescence using the Diagenode antibody directed against H3K27me3</strong><br />Human HeLa cells were stained with the Diagenode antibody against H3K27me3 (Cat. No. C15410195) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labelled with the H3K27me3 antibody (left) diluted 1:200 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right.</small></p> </div> </div>', 'label2' => 'Target Description', 'info2' => '<p><small>Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which alter chromatin structure to facilitate transcriptional activation, repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is regulated by histone methyl transferases and histone demethylases. Methylation of histone H3K27 is associated with inactive genomic regions.</small></p>', 'label3' => '', 'info3' => '', 'format' => '50 μg', 'catalog_number' => 'C15410195', 'old_catalog_number' => 'pAb-195-050', 'sf_code' => 'C15410195-D001-000581', 'type' => 'FRE', 'search_order' => '03-Antibody', 'price_EUR' => '460', 'price_USD' => '450', 'price_GBP' => '410', 'price_JPY' => '67700', 'price_CNY' => '', 'price_AUD' => '1125', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => 'January 14, 2021', 'slug' => 'h3k27me3-polyclonal-antibody-premium-50-mg-27-ml', 'meta_title' => 'H3K27me3 Antibody - ChIP-seq Grade (C15410195) | Diagenode', 'meta_keywords' => '', 'meta_description' => 'H3K27me3 (Histone H3 trimethylated at lysine 27) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, CUT&Tag, ELISA, DB, WB and IF. Specificity confirmed by Peptide array assay. Batch-specific data available on the website. Sample size available.', 'modified' => '2021-10-20 09:57:53', 'created' => '2015-06-29 14:08:20', 'ProductsRelated' => array( [maximum depth reached] ), 'Image' => array( [maximum depth reached] ) ), (int) 5 => array( 'id' => '2270', 'antibody_id' => '109', 'name' => 'H3K27ac Antibody', 'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone <strong>H3 containing the acetylated lysine 27</strong> (<strong>H3K27ac</strong>), using a KLH-conjugated synthetic peptide.</span></p>', 'label1' => 'Validation Data', 'info1' => '<div class="row"> <div class="small-6 columns">A.<img src="https://www.diagenode.com/img/product/antibodies/C15410196-ChIP-Fig1a.png" width="356" /><br /> B.<img src="https://www.diagenode.com/img/product/antibodies/C15410196-ChIP-Fig1b.png" width="356" /></div> <div class="small-6 columns"> <p><strong>Figure 1. ChIP results obtained with the Diagenode antibody directed against H3K27ac</strong></p> <p>Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H3K27ac (Cat. No. C15410196) and optimized PCR primer pairs for qPCR. ChIP was performed with the “Auto Histone ChIP-seq” kit on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 µg of antibody per ChIP experiment was analyzed. IgG (2 µg/IP) was used as a negative IP control. Quantitative PCR was performed with primers for the promoters of the active EIF4A2 and ACTB genes, used as positive controls, and for the inactive TSH2B and MYT1 genes, used as negative controls.</p> <p>Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H3K27ac (Cat. No. C15410196)and optimized PCR primer pairs for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. C01010051), using sheared chromatin from 100,000 cells. A titration consisting of 0.2, 0.5, 1 and 2 µg of antibody per ChIP experiment was analyzed. IgG (1 µg/IP) was used as a negative IP control. Quantitative PCR was performed with primers for the promoters of the active GAPDH and EIF4A2 genes, used as positive controls, and for the coding regions of the inactive MB and MYT1 genes, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis)</p> </div> </div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="row"> <div class="small-12 columns"><center> <p>A.<img src="https://www.diagenode.com/img/product/antibodies/C15410196-ChIP-Fig2a.png" /></p> </center><center> <p>B.<img src="https://www.diagenode.com/img/product/antibodies/C15410196-ChIP-Fig2b.png" /></p> </center><center> <p>C.<img src="https://www.diagenode.com/img/product/antibodies/C15410196-ChIP-Fig2c.png" /></p> </center></div> </div> <div class="row"> <div class="small-12 columns"> <p><strong>Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H3K27ac</strong></p> <p>ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 µg of the Diagenode antibody against H3K27ac (Cat. No. C15410196<span class="label-primary"></span>) as described above. The IP’d DNA was subsequently analysed on an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2A shows the peak distribution along the complete human X-chromosome. Figure 2 B and C show the peak distribution in two regions surrounding the EIF4A2 and GAPDH positive control genes, respectively. The position of the PCR amplicon, used for validating the ChIP assay is indicated with an arrow.</p> </div> </div> <div class="row"> <div class="small-12 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410196-fig3.jpg" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><strong>Figure 3. Cut&Tag results obtained with the Diagenode antibody directed against H3K27ac</strong></p> <p>CUT&TAG (Kaya-Okur, H.S., Nat Commun 10, 1930, 2019) was performed on 50,000 K562 cells using 1 µg of the Diagenode antibody against H3K27ac (cat. No. C15410196) and the Diagenode pA-Tn5 transposase (C01070001). The libraries were subsequently analysed on an Illumina NextSeq 500 sequencer (2x75 paired-end reads) according to the manufacturer's instructions. The tags were aligned to the human genome (hg19) using the BWA algorithm. Figure 3 shows the peak distribution in 2 genomic regions surrounding the EIF2S3 gene on the X-chromosome and the CCT5 gene on chromosome 5 (figure 3A and B, respectively).</p> </div> </div> <div class="row"> <div class="small-6 columns"><img src="https://www.diagenode.com/img/product/antibodies/C15410196-ELISA-Fig3.png" /></div> <div class="small-6 columns"> <p><strong>Figure 4. Determination of the antibody titer</strong></p> <p>To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H3K27ac (Cat. No. C15410196<span class="label-primary"></span>). The antigen used was a peptide containing the histone modification of interest. By plotting the absorbance against the antibody dilution (Figure 4), the titer of the antibody was estimated to be 1:8,300.</p> </div> </div> <div class="row"> <div class="small-4 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410196-DB-Fig4.png" /></center></div> <div class="small-8 columns"> <p><strong>Figure 5. Cross reactivity tests using the Diagenode antibody directed against H3K27ac</strong><br />To test the cross reactivity of the Diagenode antibody against H3K27ac (Cat. No. C15410196<span class="label-primary"></span>), a Dot Blot analysis was performed with peptides containing other histone modifications and the unmodified H3K27. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 5 shows a high specificity of the antibody for the modification of interest.</p> </div> </div> <div class="row"> <div class="small-4 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410196-WB-Fig5.png" /></center></div> <div class="small-8 columns"> <p><strong>Figure 6. Western blot analysis using the Diagenode antibody directed against H3K27ac</strong><br />Western blot was performed on whole cell (25 µg, lane 1) and histone extracts (15 µg, lane 2) from HeLa cells, and on 1 µg of recombinant histone H2A, H2B, H3 and H4 (lane 3, 4, 5 and 6, respectively) using the Diagenode antibody against H3K27ac (Cat. No. C1541196). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The marker (in kDa) is shown on the left.</p> </div> </div> <div class="row"> <div class="small-4 columns"><img src="https://www.diagenode.com/img/product/antibodies/C15410196-IF-Fig6.png" /></div> <div class="small-8 columns"> <p><strong>Figure 7. Immunofluorescence using the Diagenode antibody directed against H3K27ac</strong></p> <p>HeLa cells were stained with the Diagenode antibody against H3K27ac (Cat. No. C15410196<span class="label-primary"></span>) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/ TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H3K27ac antibody (top) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown at the bottom.</p> </div> </div>', 'label2' => 'Target Description', 'info2' => '<p style="text-align: justify;">Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of histone H3K27 is associated with active promoters and enhancers.</p>', 'label3' => '', 'info3' => '', 'format' => '50 μg', 'catalog_number' => 'C15410196', 'old_catalog_number' => 'pAb-196-050', 'sf_code' => 'C15410196-D001-000581', 'type' => 'FRE', 'search_order' => '03-Antibody', 'price_EUR' => '460', 'price_USD' => '450', 'price_GBP' => '410', 'price_JPY' => '67700', 'price_CNY' => '', 'price_AUD' => '1125', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => 'January 11, 2021', 'slug' => 'h3k27ac-polyclonal-antibody-premium-50-mg-18-ml', 'meta_title' => 'H3K27ac Antibody - ChIP-seq Grade (C15410196) | Diagenode', 'meta_keywords' => '', 'meta_description' => 'H3K27ac (Histone H3 acetylated at lysine 27) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, CUT&Tag, ELISA, DB, WB and IF. Batch-specific data available on the website. Sample size available. ', 'modified' => '2021-10-20 10:28:57', 'created' => '2015-06-29 14:08:20', 'ProductsRelated' => array( [maximum depth reached] ), 'Image' => array( [maximum depth reached] ) ) ), 'Application' => array( (int) 0 => array( 'id' => '10', 'position' => '10', 'parent_id' => '2', 'name' => 'ChIP-qPCR', 'description' => '<div class="row"> <div class="small-12 medium-12 large-12 columns text-justify"> <p class="text-justify">Chromatin Immunoprecipitation (ChIP) coupled with quantitative PCR can be used to investigate protein-DNA interaction at known genomic binding sites. if sites are not known, qPCR primers can also be designed against potential regulatory regions such as promoters. ChIP-qPCR is advantageous in studies that focus on specific genes and potential regulatory regions across differing experimental conditions as the cost of performing real-time PCR is minimal. This technique is now used in a variety of life science disciplines including cellular differentiation, tumor suppressor gene silencing, and the effect of histone modifications on gene expression.</p> <p class="text-justify"><strong>The ChIP-qPCR workflow</strong></p> </div> <div class="small-12 medium-12 large-12 columns text-center"><br /> <img src="https://www.diagenode.com/img/chip-qpcr-diagram.png" /></div> <div class="small-12 medium-12 large-12 columns"><br /> <ol> <li class="large-12 columns"><strong>Chromatin preparation: </strong>cell fixation (cross-linking) of chromatin-bound proteins such as histones or transcription factors to DNA followed by cell lysis.</li> <li class="large-12 columns"><strong>Chromatin shearing: </strong>fragmentation of chromatin<strong> </strong>by sonication down to desired fragment size (100-500 bp)</li> <li class="large-12 columns"><strong>Chromatin IP</strong>: protein-DNA complexe capture using<strong> <a href="https://www.diagenode.com/en/categories/chip-grade-antibodies">specific ChIP-grade antibodies</a></strong> against the histone or transcription factor of interest</li> <li class="large-12 columns"><strong>DNA purification</strong>: chromatin reverse cross-linking and elution followed by purification<strong> </strong></li> <li class="large-12 columns"><strong>qPCR and analysis</strong>: using previously designed primers to amplify IP'd material at specific loci</li> </ol> </div> </div> <div class="row" style="margin-top: 32px;"> <div class="small-12 medium-10 large-9 small-centered columns"> <div class="radius panel" style="background-color: #fff;"> <h3 class="text-center" style="color: #b21329;">Need guidance?</h3> <p class="text-justify">Choose our full ChIP kits or simply choose what you need from antibodies, buffers, beads, chromatin shearing and purification reagents. With the ChIP Kit Customizer, you have complete flexibility on which components you want from our validated ChIP kits.</p> <div class="row"> <div class="small-6 medium-6 large-6 columns"><a href="https://www.diagenode.com/pages/which-kit-to-choose"><img src="https://www.diagenode.com/img/banners/banner-decide.png" alt="" /></a></div> <div class="small-6 medium-6 large-6 columns"><a href="https://www.diagenode.com/pages/chip-kit-customizer-1"><img src="https://www.diagenode.com/img/banners/banner-customizer.png" alt="" /></a></div> </div> </div> </div> </div>', 'in_footer' => false, 'in_menu' => true, 'online' => true, 'tabular' => true, 'slug' => 'chip-qpcr', 'meta_keywords' => 'Chromatin immunoprecipitation,ChIP Quantitative PCR,polymerase chain reaction (PCR)', 'meta_description' => 'Diagenode's ChIP qPCR kits can be used to quantify enriched DNA after chromatin immunoprecipitation. ChIP-qPCR is advantageous in studies that focus on specific genes and potential regulatory regions across differing experimental conditions as the cost of', 'meta_title' => 'ChIP Quantitative PCR (ChIP-qPCR) | Diagenode', 'modified' => '2018-01-09 16:46:56', 'created' => '2014-12-11 00:22:08', 'ProductsApplication' => array( [maximum depth reached] ) ) ), 'Category' => array( (int) 0 => array( 'id' => '119', 'position' => '3', 'parent_id' => '59', 'name' => 'Older generation kits', 'description' => '', 'no_promo' => false, 'in_menu' => false, 'online' => true, 'tabular' => true, 'hide' => false, 'all_format' => false, 'is_antibody' => false, 'slug' => 'chromatin-ip-older-generation-kits', 'cookies_tag_id' => null, 'meta_keywords' => '', 'meta_description' => '', 'meta_title' => '', 'modified' => '2017-06-16 12:04:39', 'created' => '2016-07-19 17:00:05', 'ProductsCategory' => array( [maximum depth reached] ), 'CookiesTag' => array([maximum depth reached]) ) ), 'Document' => array( (int) 0 => array( 'id' => '92', 'name' => 'LowCell# ChIP kit', 'description' => '<div class="page" title="Page 4"> <div class="section"> <div class="layoutArea"> <div class="column"> <p><span>Diagenode provides kits with optimized reagents and simplified protocols for ChIP including the LowCell# ChIP Kit, <a href="https://www.diagenode.com/en/p/ideal-chip-qpcr-kit">iDeal ChIP-qPCR kit</a>, <a href="https://www.diagenode.com/en/p/ideal-chip-ffpe-kit">iDeal ChIP FFPE kit</a>, <a href="https://www.diagenode.com/en/categories/chromatin-ip-chip-seq-kits">iDeal ChIP-seq kits</a>, <a href="https://www.diagenode.com/en/p/true-microchip-kit-x16-16-rxns">True MicroChIP kit</a>, <a href="https://www.diagenode.com/en/p/universal-plant-chip-seq-kit-x24-24-rxns">Universal Plant ChIP-seq kit </a>and <a href="https://www.diagenode.com/en/categories/chromatin-ip-chipmentation">the ChIPmentation for Histones</a>. This protocol describes the use of the LowCell# ChIP Kit.</span></p> </div> </div> </div> </div>', 'image_id' => null, 'type' => 'Manual', 'url' => 'files/products/kits/LowCell-chip-kit-manual.pdf', 'slug' => 'lowcell-chip-kit-manual', 'meta_keywords' => '', 'meta_description' => '', 'modified' => '2019-05-17 11:30:59', 'created' => '2015-07-07 11:47:43', 'ProductsDocument' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '37', 'name' => 'Chromatin Brochure', 'description' => '<p>Whether you are experienced or new to the field of chromatin immunoprecipitation, Diagenode has everything you need to make ChIP easy and convenient while ensuring consistent data between samples and experiments. As an expert in the field of epigenetics, Diagenode is committed to providing complete solutions from chromatin shearing reagents, shearing instruments such as the Bioruptor® (the gold standard for chromatin shearing), ChIP kits, the largest number of validated and trusted antibodies on the market, and the SX-8G IP-Star® Compact Automated System to achieve unparalleled productivity and reproducibility.</p>', 'image_id' => null, 'type' => 'Brochure', 'url' => 'files/brochures/Chromatin_Immunoprecipitation_Brochure.pdf', 'slug' => 'chromatin-immunoprecipitation-brochure', 'meta_keywords' => '', 'meta_description' => '', 'modified' => '2022-03-24 12:34:11', 'created' => '2015-07-03 16:05:27', 'ProductsDocument' => array( [maximum depth reached] ) ) ), 'Feature' => array(), 'Image' => array( (int) 0 => array( 'id' => '1775', 'name' => 'product/kits/chip-kit-icon.png', 'alt' => 'ChIP kit icon', 'modified' => '2018-04-17 11:52:29', 'created' => '2018-03-15 15:50:34', 'ProductsImage' => array( [maximum depth reached] ) ) ), 'Promotion' => array(), 'Protocol' => array(), 'Publication' => array( (int) 0 => array( 'id' => '3853', 'name' => 'Heterochromatin protein 1γ deficiency decreases histone H3K27 methylation in mouse neurosphere neuronal genes.', 'authors' => 'Naruse C, Abe K, Yoshihara T, Kato T, Nishiuchi T, Asano M', 'description' => '<p>Heterochromatin protein (HP) 1γ, a component of heterochromatin in eukaryotes, is involved in H3K9 methylation. Although HP1γ is expressed strongly in neural tissues and neural stem cells, its functions are unclear. To elucidate the roles of HP1γ, we analyzed HP1γ -deficient (HP1γ KO) mouse embryonic neurospheres and determined that HP1γ KO neurospheres tended to differentiate after quaternary culture. Several genes normally expressed in neuronal cells were upregulated in HP1γ KO undifferentiated neurospheres, but not in the wild type (WT). Compared to that in the control neurospheres, the occupancy of H3K27me3 was lower around the transcription start sites (TSSs) of these genes in HP1γ KO neurospheres, while H3K9me2/3, H3K4me3, and H3K27ac amounts remained unchanged. Moreover, amounts of the H3K27me2/3 demethylases, UTX, and JMJD3, were increased around the TSSs of these genes. Treatment with GSK-J4, an inhibitor of H3K27 demethylases, decreased the expression of genes upregulated in HP1γ KO neurospheres, along with an increase of H3K27me3 amounts. Therefore, in murine neurospheres, HP1γ protected the promoter sites of differentiated cell-specific genes against H3K27 demethylases to repress the expression of these genes. A better understanding of central cellular processes such as histone methylation will help elucidate critical events such as cell-specific gene expression, epigenetics, and differentiation.</p>', 'date' => '2020-01-21', 'pmid' => 'http://www.pubmed.gov/31961023', 'doi' => '10.1096/fj.201900139R', 'modified' => '2020-03-20 18:00:54', 'created' => '2020-03-13 13:45:54', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '3833', 'name' => 'SIRT1/2 orchestrate acquisition of DNA methylation and loss of histone H3 activating marks to prevent premature activation of inflammatory genes in macrophages.', 'authors' => 'Li T, Garcia-Gomez A, Morante-Palacios O, Ciudad L, Özkaramehmet S, Van Dijck E, Rodríguez-Ubreva J, Vaquero A, Ballestar E', 'description' => '<p>Sirtuins 1 and 2 (SIRT1/2) are two NAD-dependent deacetylases with major roles in inflammation. In addition to deacetylating histones and other proteins, SIRT1/2-mediated regulation is coupled with other epigenetic enzymes. Here, we investigate the links between SIRT1/2 activity and DNA methylation in macrophage differentiation due to their relevance in myeloid cells. SIRT1/2 display drastic upregulation during macrophage differentiation and their inhibition impacts the expression of many inflammation-related genes. In this context, SIRT1/2 inhibition abrogates DNA methylation gains, but does not affect demethylation. Inhibition of hypermethylation occurs at many inflammatory loci, which results in more drastic upregulation of their expression upon macrophage polarization following bacterial lipopolysaccharide (LPS) challenge. SIRT1/2-mediated gains of methylation concur with decreases in activating histone marks, and their inhibition revert these histone marks to resemble an open chromatin. Remarkably, specific inhibition of DNA methyltransferases is sufficient to upregulate inflammatory genes that are maintained in a silent state by SIRT1/2. Both SIRT1 and SIRT2 directly interact with DNMT3B, and their binding to proinflammatory genes is lost upon exposure to LPS or through pharmacological inhibition of their activity. In all, we describe a novel role for SIRT1/2 to restrict premature activation of proinflammatory genes.</p>', 'date' => '2019-12-04', 'pmid' => 'http://www.pubmed.gov/31799621', 'doi' => '10.1093/nar/gkz1127', 'modified' => '2020-02-25 13:27:46', 'created' => '2020-02-13 10:02:44', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '3796', 'name' => 'Identification and Massively Parallel Characterization of Regulatory Elements Driving Neural Induction', 'authors' => 'Inoue Fumitaka, Kreimer Anat, Ashuach Tal, Ahituv Nadav, Yosef Nir', 'description' => '<p>Epigenomic regulation and lineage-specific gene expression act in concert to drive cellular differentiation, but the temporal interplay between these processes is largely unknown. Using neural induction from human pluripotent stem cells (hPSCs) as a paradigm, we interrogated these dynamics by performing RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), and assay for transposase accessible chromatin using sequencing (ATAC-seq) at seven time points during early neural differentiation. We found that changes in DNA accessibility precede H3K27ac, which is followed by gene expression changes. Using massively parallel reporter assays (MPRAs) to test the activity of 2,464 candidate regulatory sequences at all seven time points, we show that many of these sequences have temporal activity patterns that correlate with their respective cell-endogenous gene expression and chromatin changes. A prioritization method incorporating all genomic and MPRA data further identified key transcription factors involved in driving neural fate. These results provide a comprehensive resource of genes and regulatory elements that orchestrate neural induction and illuminate temporal frameworks during differentiation.</p>', 'date' => '2019-11-07', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pubmed/31631012', 'doi' => '10.1016/j.stem.2019.09.010', 'modified' => '2019-12-05 11:36:36', 'created' => '2019-12-02 15:25:44', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '3807', 'name' => 'Epigenetic remodelling licences adult cholangiocytes for organoid formation and liver regeneration.', 'authors' => 'Aloia L, McKie MA, Vernaz G, Cordero-Espinoza L, Aleksieva N, van den Ameele J, Antonica F, Font-Cunill B, Raven A, Aiese Cigliano R, Belenguer G, Mort RL, Brand AH, Zernicka-Goetz M, Forbes SJ, Miska EA, Huch M', 'description' => '<p>Following severe or chronic liver injury, adult ductal cells (cholangiocytes) contribute to regeneration by restoring both hepatocytes and cholangiocytes. We recently showed that ductal cells clonally expand as self-renewing liver organoids that retain their differentiation capacity into both hepatocytes and ductal cells. However, the molecular mechanisms by which adult ductal-committed cells acquire cellular plasticity, initiate organoids and regenerate the damaged tissue remain largely unknown. Here, we describe that ductal cells undergo a transient, genome-wide, remodelling of their transcriptome and epigenome during organoid initiation and in vivo following tissue damage. TET1-mediated hydroxymethylation licences differentiated ductal cells to initiate organoids and activate the regenerative programme through the transcriptional regulation of stem-cell genes and regenerative pathways including the YAP-Hippo signalling. Our results argue in favour of the remodelling of genomic methylome/hydroxymethylome landscapes as a general mechanism by which differentiated cells exit a committed state in response to tissue damage.</p>', 'date' => '2019-11-04', 'pmid' => 'http://www.pubmed.gov/31685987', 'doi' => '10.1038/s41556-019-0402-6', 'modified' => '2019-12-05 11:19:34', 'created' => '2019-12-02 15:25:44', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '3630', 'name' => 'Hyper-Editing of Cell-Cycle Regulatory and Tumor Suppressor RNA Promotes Malignant Progenitor Propagation.', 'authors' => 'Jiang Q, Isquith J, Zipeto MA, Diep RH, Pham J, Delos Santos N, Reynoso E, Chau J, Leu H, Lazzari E, Melese E, Ma W, Fang R, Minden M, Morris S, Ren B, Pineda G, Holm F, Jamieson C', 'description' => '<p>Adenosine deaminase associated with RNA1 (ADAR1) deregulation contributes to therapeutic resistance in many malignancies. Here we show that ADAR1-induced hyper-editing in normal human hematopoietic progenitors impairs miR-26a maturation, which represses CDKN1A expression indirectly via EZH2, thereby accelerating cell-cycle transit. However, in blast crisis chronic myeloid leukemia progenitors, loss of EZH2 expression and increased CDKN1A oppose cell-cycle transit. Moreover, A-to-I editing of both the MDM2 regulatory microRNA and its binding site within the 3' UTR region stabilizes MDM2 transcripts, thereby enhancing blast crisis progenitor propagation. These data reveal a dual mechanism governing malignant transformation of progenitors that is predicated on hyper-editing of cell-cycle-regulatory miRNAs and the 3' UTR binding site of tumor suppressor miRNAs.</p>', 'date' => '2019-01-14', 'pmid' => 'http://www.pubmed.gov/30612940', 'doi' => '10.1016/j.ccell.2018.11.017', 'modified' => '2019-05-08 12:25:16', 'created' => '2019-04-25 11:11:44', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 5 => array( 'id' => '3566', 'name' => 'Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes.', 'authors' => 'Ferguson GB, Van Handel B, Bay M, Fiziev P, Org T, Lee S, Shkhyan R, Banks NW, Scheinberg M, Wu L, Saitta B, Elphingstone J, Larson AN, Riester SM, Pyle AD, Bernthal NM, Mikkola HK, Ernst J, van Wijnen AJ, Bonaguidi M, Evseenko D', 'description' => '<p>Tissue-specific gene expression defines cellular identity and function, but knowledge of early human development is limited, hampering application of cell-based therapies. Here we profiled 5 distinct cell types at a single fetal stage, as well as chondrocytes at 4 stages in vivo and 2 stages during in vitro differentiation. Network analysis delineated five tissue-specific gene modules; these modules and chromatin state analysis defined broad similarities in gene expression during cartilage specification and maturation in vitro and in vivo, including early expression and progressive silencing of muscle- and bone-specific genes. Finally, ontogenetic analysis of freshly isolated and pluripotent stem cell-derived articular chondrocytes identified that integrin alpha 4 defines 2 subsets of functionally and molecularly distinct chondrocytes characterized by their gene expression, osteochondral potential in vitro and proliferative signature in vivo. These analyses provide new insight into human musculoskeletal development and provide an essential comparative resource for disease modeling and regenerative medicine.</p>', 'date' => '2018-09-07', 'pmid' => 'http://www.pubmed.gov/30194383', 'doi' => '10.1038/s41467-018-05573-y', 'modified' => '2019-03-25 11:14:45', 'created' => '2019-03-21 14:12:08', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '3624', 'name' => 'The transcription factor Lef1 switches partners from β-catenin to Smad3 during muscle stem cell quiescence.', 'authors' => 'Aloysius A, DasGupta R, Dhawan J', 'description' => '<p>Skeletal muscle stem cells (MuSCs), also known as satellite cells, persist in adult mammals by entering a state of quiescence (G) during the early postnatal period. Quiescence is reversed during damage-induced regeneration and re-established after regeneration. Entry of cultured myoblasts into G is associated with a specific, reversible induction of Wnt target genes, thus implicating members of the Tcf and Lef1 (Tcf/Lef) transcription factor family, which mediate transcriptional responses to Wnt signaling, in the initiation of quiescence. We found that the canonical Wnt effector β-catenin, which cooperates with Tcf/Lef, was dispensable for myoblasts to enter quiescence. Using pharmacological and genetic approaches in cultured C2C12 myoblasts and in MuSCs, we demonstrated that Tcf/Lef activity during quiescence depended not on β-catenin but on the transforming growth factor-β (TGF-β) effector and transcriptional coactivator Smad3, which colocalized with Lef1 at canonical Wnt-responsive elements and directly interacted with Lef1 specifically in G Depletion of Smad3, but not β-catenin, reduced Lef1 occupancy at target promoters, Tcf/Lef target gene expression, and self-renewal of myoblasts. In vivo, MuSCs underwent a switch from β-catenin-Lef1 to Smad3-Lef1 interactions during the postnatal switch from proliferation to quiescence, with β-catenin-Lef1 interactions recurring during damage-induced reactivation. Our findings suggest that the interplay of Wnt-Tcf/Lef and TGF-β-Smad3 signaling activates canonical Wnt target promoters in a manner that depends on β-catenin during myoblast proliferation but is independent of β-catenin during MuSC quiescence.</p>', 'date' => '2018-07-24', 'pmid' => 'http://www.pubmed.gov/30042129', 'doi' => '10.1126/scisignal.aan3000', 'modified' => '2019-05-16 11:16:29', 'created' => '2019-04-25 11:11:44', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 7 => array( 'id' => '3625', 'name' => 'A LINE1-Nucleolin Partnership Regulates Early Development and ESC Identity.', 'authors' => 'Percharde M, Lin CJ, Yin Y, Guan J, Peixoto GA, Bulut-Karslioglu A, Biechele S, Huang B, Shen X, Ramalho-Santos M', 'description' => '<p>Transposable elements represent nearly half of mammalian genomes and are generally described as parasites, or "junk DNA." The LINE1 retrotransposon is the most abundant class and is thought to be deleterious for cells, yet it is paradoxically highly expressed during early development. Here, we report that LINE1 plays essential roles in mouse embryonic stem cells (ESCs) and pre-implantation embryos. In ESCs, LINE1 acts as a nuclear RNA scaffold that recruits Nucleolin and Kap1/Trim28 to repress Dux, the master activator of a transcriptional program specific to the 2-cell embryo. In parallel, LINE1 RNA mediates binding of Nucleolin and Kap1 to rDNA, promoting rRNA synthesis and ESC self-renewal. In embryos, LINE1 RNA is required for Dux silencing, synthesis of rRNA, and exit from the 2-cell stage. The results reveal an essential partnership between LINE1 RNA, Nucleolin, Kap1, and peri-nucleolar chromatin in the regulation of transcription, developmental potency, and ESC self-renewal.</p>', 'date' => '2018-07-12', 'pmid' => 'http://www.pubmed.gov/29937225', 'doi' => '10.1016/j.cell.2018.05.043', 'modified' => '2019-05-16 11:17:25', 'created' => '2019-04-25 11:11:44', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 8 => array( 'id' => '3465', 'name' => 'Whole-Genome Sequencing of Pharmacogenetic Drug Response in Racially Diverse Children with Asthma.', 'authors' => 'Mak ACY, White MJ, Eckalbar WL, Szpiech ZA, Oh SS, Pino-Yanes M, Hu D, Goddard P, Huntsman S, Galanter J, Wu AC, Himes BE, Germer S, Vogel JM, Bunting KL, Eng C, Salazar S, Keys KL, Liberto J, Nuckton TJ, Nguyen TA, Torgerson DG, Kwok PY, Levin AM, Celedó', 'description' => '<p>RATIONALE: Albuterol, a bronchodilator medication, is the first-line therapy for asthma worldwide. There are significant racial/ethnic differences in albuterol drug response. OBJECTIVES: To identify genetic variants important for bronchodilator drug response (BDR) in racially diverse children. METHODS: We performed the first whole-genome sequencing pharmacogenetics study from 1,441 children with asthma from the tails of the BDR distribution to identify genetic association with BDR. MEASUREMENTS AND MAIN RESULTS: We identified population-specific and shared genetic variants associated with BDR, including genome-wide significant (P < 3.53 × 10) and suggestive (P < 7.06 × 10) loci near genes previously associated with lung capacity (DNAH5), immunity (NFKB1 and PLCB1), and β-adrenergic signaling (ADAMTS3 and COX18). Functional analyses of the BDR-associated SNP in NFKB1 revealed potential regulatory function in bronchial smooth muscle cells. The SNP is also an expression quantitative trait locus for a neighboring gene, SLC39A8. The lack of other asthma study populations with BDR and whole-genome sequencing data on minority children makes it impossible to perform replication of our rare variant associations. Minority underrepresentation also poses significant challenges to identify age-matched and population-matched cohorts of sufficient sample size for replication of our common variant findings. CONCLUSIONS: The lack of minority data, despite a collaboration of eight universities and 13 individual laboratories, highlights the urgent need for a dedicated national effort to prioritize diversity in research. Our study expands the understanding of pharmacogenetic analyses in racially/ethnically diverse populations and advances the foundation for precision medicine in at-risk and understudied minority populations.</p>', 'date' => '2018-06-15', 'pmid' => 'http://www.pubmed.gov/29509491', 'doi' => '10.1164/rccm.201712-2529OC', 'modified' => '2019-02-15 20:55:23', 'created' => '2019-02-14 15:01:22', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 9 => array( 'id' => '3472', 'name' => 'Replication-coupled histone H3.1 deposition determines nucleosome composition and heterochromatin dynamics during Arabidopsis seedling development.', 'authors' => 'Benoit M, Simon L, Desset S, Duc C, Cotterell S, Poulet A, Le Goff S, Tatout C, Probst AV', 'description' => '<p>Developmental phase transitions are often characterized by changes in the chromatin landscape and heterochromatin reorganization. In Arabidopsis, clustering of repetitive heterochromatic loci into so-called chromocenters is an important determinant of chromosome organization in nuclear space. Here, we investigated the molecular mechanisms involved in chromocenter formation during the switch from a heterotrophic to a photosynthetically competent state during early seedling development. We characterized the spatial organization and chromatin features at centromeric and pericentromeric repeats and identified mutant contexts with impaired chromocenter formation. We find that clustering of repetitive DNA loci into chromocenters takes place in a precise temporal window and results in reinforced transcriptional repression. Although repetitive sequences are enriched in H3K9me2 and linker histone H1 before repeat clustering, chromocenter formation involves increasing enrichment in H3.1 as well as H2A.W histone variants, hallmarks of heterochromatin. These processes are severely affected in mutants impaired in replication-coupled histone assembly mediated by CHROMATIN ASSEMBLY FACTOR 1 (CAF-1). We further reveal that histone deposition by CAF-1 is required for efficient H3K9me2 enrichment at repetitive sequences during chromocenter formation. Taken together, we show that chromocenter assembly during post-germination development requires dynamic changes in nucleosome composition and histone post-translational modifications orchestrated by the replication-coupled H3.1 deposition machinery.</p>', 'date' => '2018-06-13', 'pmid' => 'http://www.pubmed.gov/29897636', 'doi' => '10.1111/nph.15248', 'modified' => '2019-02-15 20:56:57', 'created' => '2019-02-14 15:01:22', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 10 => array( 'id' => '3534', 'name' => 'The Transcriptionally Permissive Chromatin State of Embryonic Stem Cells Is Acutely Tuned to Translational Output.', 'authors' => 'Bulut-Karslioglu A, Macrae TA, Oses-Prieto JA, Covarrubias S, Percharde M, Ku G, Diaz A, McManus MT, Burlingame AL, Ramalho-Santos M', 'description' => '<p>A permissive chromatin environment coupled to hypertranscription drives the rapid proliferation of embryonic stem cells (ESCs) and peri-implantation embryos. We carried out a genome-wide screen to systematically dissect the regulation of the euchromatic state of ESCs. The results revealed that cellular growth pathways, most prominently translation, perpetuate the euchromatic state and hypertranscription of ESCs. Acute inhibition of translation rapidly depletes euchromatic marks in mouse ESCs and blastocysts, concurrent with delocalization of RNA polymerase II and reduction in nascent transcription. Translation inhibition promotes rewiring of chromatin accessibility, which decreases at a subset of active developmental enhancers and increases at histone genes and transposable elements. Proteome-scale analyses revealed that several euchromatin regulators are unstable proteins and continuously depend on a high translational output. We propose that this mechanistic interdependence of euchromatin, transcription, and translation sets the pace of proliferation at peri-implantation and may be employed by other stem/progenitor cells.</p>', 'date' => '2018-03-01', 'pmid' => 'http://www.pubmed.gov/29499153', 'doi' => '10.1016/j.stem.2018.02.004', 'modified' => '2019-02-28 10:50:24', 'created' => '2019-02-27 12:54:44', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 11 => array( 'id' => '3363', 'name' => 'Oestrogen Receptor-α binds the FOXP3 promoter and modulates regulatory T-cell function in human cervical cancer', 'authors' => 'Adurthi S. et al.', 'description' => '<p>Oestrogen controls Foxp3 expression in regulatory T cells (T<sub>reg</sub> cells) via a mechanism thought to involve oestrogen receptor alpha (ERα), but the molecular basis and functional impact of ERα signalling in T<sub>reg</sub> cells remain unclear. We report that ERα ligand oestradiol (E2) is significantly increased in human cervical cancer (CxCa) tissues and tumour-infiltrating T<sub>reg</sub> cells (CD4<sup>+</sup>CD25<sup>hi</sup>CD127<sup>low</sup>), whereas blocking ERα with the antagonist ICI 182,780 abolishes FOXP3 expression and impairs the function of CxCa infiltrating T<sub>reg</sub> cells. Using a novel approach of co-immunoprecipitation with antibodies to E2 for capture, we identified binding of E2:ERα complexes to FOXP3 protein in CxCa-derived T<sub>reg</sub> cells. Chromatin immunoprecipitation analyses of male blood T<sub>reg</sub> cells revealed ERα occupancy at the FOXP3 promoter and conserved non-coding DNA elements 2 and 3. Accordingly, computational analyses of the enriched regions uncovered eight putative oestrogen response elements predicted to form a loop that can activate the FOXP3 promoter. Together, these data suggest that E2-mediated ERα signalling is critical for the sustenance of FOXP3 expression and T<sub>reg</sub> cell function in human CxCa via direct interaction of ERα with FOXP3 promoter. Overall, our work gives a molecular insight into ERα signalling and highlights a fundamental role of E2 in controlling human T<sub>reg</sub> cell physiology.</p>', 'date' => '2017-12-11', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pubmed/29229929', 'doi' => '', 'modified' => '2018-04-24 10:07:53', 'created' => '2018-04-24 10:07:53', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 12 => array( 'id' => '3292', 'name' => 'Distinguishing States of Arrest: Genome-Wide Descriptions of Cellular Quiescence Using ChIP-Seq and RNA-Seq Analysis.', 'authors' => 'Srivastava S. et al.', 'description' => '<p>Regenerative potential in adult stem cells is closely associated with the establishment of-and exit from-a temporary state of quiescence. Emerging evidence not only provides a rationale for the link between lineage determination programs and cell cycle regulation but also highlights the understanding of quiescence as an actively maintained cellular program, encompassing networks and mechanisms beyond mitotic inactivity or metabolic restriction. Interrogating the quiescent genome and transcriptome using deep-sequencing technologies offers an unprecedented view of the global mechanisms governing this reversibly arrested cellular state and its importance for cell identity. While many efforts have identified and isolated pure target stem cell populations from a variety of adult tissues, there is a growing appreciation that their isolation from the stem cell niche in vivo leads to activation and loss of hallmarks of quiescence. Thus, in vitro models that recapitulate the dynamic reversibly arrested stem cell state in culture and lend themselves to comparison with the activated or differentiated state are useful templates for genome-wide analysis of the quiescence network.In this chapter, we describe the methods that can be adopted for whole genome epigenomic and transcriptomic analysis of cells derived from one such established culture model where mouse myoblasts are triggered to enter or exit quiescence as homogeneous populations. The ability to synchronize myoblasts in G<sub>0</sub> permits insights into the genome in "deep quiescence." The culture methods for generating large populations of quiescent myoblasts in either 2D or 3D culture formats are described in detail in a previous chapter in this series (Arora et al. Methods Mol Biol 1556:283-302, 2017). Among the attractive features of this model are that genes isolated from quiescent myoblasts in culture mark satellite cells in vivo (Sachidanandan et al., J Cell Sci 115:2701-2712, 2002) providing a validation of its approximation of the molecular state of true stem cells. Here, we provide our working protocols for ChIP-seq and RNA-seq analysis, focusing on those experimental elements that require standardization for optimal analysis of chromatin and RNA from quiescent myoblasts, and permitting useful and revealing comparisons with proliferating myoblasts or differentiated myotubes.</p>', 'date' => '2017-10-13', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pubmed/29030824', 'doi' => '', 'modified' => '2017-12-05 09:14:02', 'created' => '2017-12-04 10:43:02', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 13 => array( 'id' => '3299', 'name' => 'Rapid Communication: The correlation between histone modifications and expression of key genes involved in accumulation of adipose tissue in the pig.', 'authors' => 'Kociucka B. et al.', 'description' => '<p>Histone modification is a well-known epigenetic mechanism involved in regulation of gene expression; however, it has been poorly studied in adipose tissues of the pig. Understanding the molecular background of adipose tissue development and function is essential for improving production efficiency and meat quality. The objective of this study was to identify the association between histone modification and the transcript level of genes important for lipid droplet formation and metabolism. Histone modifications at the promoter regions of 6 genes (, , , , , and ) were analyzed using a chromatin immunoprecipitation assay. Two modifications involved in activation of gene expression (acetylation of H3 histone at lysine 9 and methylation of H3 histone at lysine 4) as well as methylation of H3 histone at lysine 27, which is known to be related to gene repression, were examined. The level of histone modification was compared with transcript abundance determined using real-time PCR in tissue samples (subcutaneous fat, visceral fat, and longissimus dorsi muscle) derived from 3 pig breeds significantly differing in fatness traits (Polish Large White, Duroc, and Pietrain). Transcript levels were found to be correlated with histone modifications characteristic to active loci in 4 of 6 genes. A positive correlation between histone H3 lysine 9 acetylation modification and the transcript level of ( = 0.53, < 4.8 × 10), ( = 0.34, < 0.02), and ( = 0.43, < 1.0 × 10) genes was observed. The histone H3 lysine 4 trimethylation modification correlated with transcripts of ( = 0.64, < 4.6 × 10) and ( = 0.37, < 0.01) genes. No correlation was found between transcript level of all studied genes and histone H3 lysine 27 trimethylation level. This is the first study on histone modifications in porcine adipose tissues. We confirmed the relationship between histone modifications and expression of key genes for adipose tissue accumulation in the pig. Epigenetic modulation of the transcriptional profile of these genes (e.g., through nutritional factors) may improve porcine fatness traits in future.</p>', 'date' => '2017-10-01', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pubmed/29108067', 'doi' => '', 'modified' => '2017-12-05 10:39:56', 'created' => '2017-12-05 09:31:02', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 14 => array( 'id' => '3266', 'name' => 'TET2- and TDG-mediated changes are required for the acquisition of distinct histone modifications in divergent terminal differentiation of myeloid cells', 'authors' => 'Garcia-Gomez A. et al.', 'description' => '<p>The plasticity of myeloid cells is illustrated by a diversity of functions including their role as effectors of innate immunity as macrophages (MACs) and bone remodelling as osteoclasts (OCs). TET2, a methylcytosine dioxygenase highly expressed in these cells and frequently mutated in myeloid leukemias, may be a key contributor to this plasticity. Through transcriptomic and epigenomic analyses, we investigated 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) and gene expression changes in two divergent terminal myeloid differentiation processes, namely MAC and OC differentiation. MACs and OCs undergo highly similar 5hmC and 5mC changes, despite their wide differences in gene expression. Many TET2- and thymine-DNA glycosylase (TDG)-dependent 5mC and 5hmC changes directly activate the common terminal myeloid differentiation programme. However, the acquisition of differential features between MACs and OCs also depends on TET2/TDG. In fact, 5mC oxidation precedes differential histone modification changes between MACs and OCs. TET2 and TDG downregulation impairs the acquisition of such differential histone modification and expression patterns at MAC-/OC-specific genes. We prove that the histone H3K4 methyltransferase SETD1A is differentially recruited between MACs and OCs in a TET2-dependent manner. We demonstrate a novel role of these enzymes in the establishment of specific elements of identity and function in terminal myeloid differentiation.</p>', 'date' => '2017-09-29', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pubmed/28973458', 'doi' => '', 'modified' => '2017-10-09 16:19:32', 'created' => '2017-10-09 16:19:32', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 15 => array( 'id' => '3278', 'name' => '5-hydroxymethylcytosine accumulation in postmitotic neurons results in functional demethylation of expressed genes', 'authors' => 'Mellén M. et al.', 'description' => '<p>5-hydroxymethylcytosine (5hmC) occurs at maximal levels in postmitotic neurons, where its accumulation is cell-specific and correlated with gene expression. Here we demonstrate that the distribution of 5hmC in CG and non-CG dinucleotides is distinct and that it reflects the binding specificity and genome occupancy of methylcytosine binding protein 2 (MeCP2). In expressed gene bodies, accumulation of 5hmCG acts in opposition to 5mCG, resulting in “functional” demethylation and diminished MeCP2 binding, thus facilitating transcription. Non-CG hydroxymethylation occurs predominantly in CA dinucleotides (5hmCA) and it accumulates in regions flanking active enhancers. In these domains, oxidation of 5mCA to 5hmCA does not alter MeCP2 binding or expression of adjacent genes. We conclude that the role of 5-hydroxymethylcytosine in postmitotic neurons is to functionally demethylate expressed gene bodies while retaining the role of MeCP2 in chromatin organization.</p>', 'date' => '2017-09-12', 'pmid' => 'http://www.pnas.org/content/114/37/E7812.abstract', 'doi' => '', 'modified' => '2017-10-16 10:25:17', 'created' => '2017-10-16 10:25:17', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 16 => array( 'id' => '3281', 'name' => 'Epigenome profiling and editing of neocortical progenitor cells during development', 'authors' => 'Albert M. et al.', 'description' => '<p>The generation of neocortical neurons from neural progenitor cells (NPCs) is primarily controlled by transcription factors binding to DNA in the context of chromatin. To understand the complex layer of regulation that orchestrates different NPC types from the same DNA sequence, epigenome maps with cell type resolution are required. Here, we present genomewide histone methylation maps for distinct neural cell populations in the developing mouse neocortex. Using different chromatin features, we identify potential novel regulators of cortical NPCs. Moreover, we identify extensive H3K27me3 changes between NPC subtypes coinciding with major developmental and cell biological transitions. Interestingly, we detect dynamic H3K27me3 changes on promoters of several crucial transcription factors, including the basal progenitor regulator <i>Eomes</i> We use catalytically inactive Cas9 fused with the histone methyltransferase Ezh2 to edit H3K27me3 at the <i>Eomes</i> locus <i>in vivo</i>, which results in reduced Tbr2 expression and lower basal progenitor abundance, underscoring the relevance of dynamic H3K27me3 changes during neocortex development. Taken together, we provide a rich resource of neocortical histone methylation data and outline an approach to investigate its contribution to the regulation of selected genes during neocortical development.</p>', 'date' => '2017-09-01', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pubmed/28765163', 'doi' => '', 'modified' => '2017-10-17 10:25:58', 'created' => '2017-10-17 10:25:58', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 17 => array( 'id' => '3213', 'name' => 'Viral driven epigenetic events alter the expression of cancer-related genes in Epstein-Barr-virus naturally infected Burkitt lymphoma cell lines', 'authors' => 'Hector Hernandez-Vargas, Henri Gruffat, Marie Pierre Cros, Audrey Diederichs, Cécilia Sirand, Romina C. Vargas-Ayala, Antonin Jay, Geoffroy Durand, Florence Le Calvez-Kelm, Zdenko Herceg, Evelyne Manet, Christopher P. Wild', 'description' => '<p><span>Epstein-Barr virus (EBV) was identified as the first human virus to be associated with a human malignancy, Burkitt’s lymphoma (BL), a pediatric cancer endemic in sub-Saharan Africa. The exact mechanism of how EBV contributes to the process of lymphomagenesis is not fully understood. Recent studies have highlighted a genetic difference between endemic (EBV+) and sporadic (EBV−) BL, with the endemic variant showing a lower somatic mutation load, which suggests the involvement of an alternative virally-driven process of transformation in the pathogenesis of endemic BL. We tested the hypothesis that a global change in DNA methylation may be induced by infection with EBV, possibly thereby accounting for the lower mutation load observed in endemic BL. Our comparative analysis of the methylation profiles of a panel of BL derived cell lines, naturally infected or not with EBV, revealed that the presence of the virus is associated with a specific pattern of DNA methylation resulting in altered expression of cellular genes with a known or potential role in lymphomagenesis. These included ID3, a gene often found to be mutated in sporadic BL. In summary this study provides evidence that EBV may contribute to the pathogenesis of BL through an epigenetic mechanism.</span></p>', 'date' => '2017-07-19', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5517637/', 'doi' => ' 10.1038/s41598-017-05713-2', 'modified' => '2017-07-28 08:05:11', 'created' => '2017-07-28 08:05:11', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 18 => array( 'id' => '3216', 'name' => 'Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b', 'authors' => 'Kevin T. Ebata, Kathryn Mesh, Shichong Liu, Misha Bilenky, Alexander Fekete, Michael G. Acker, Martin Hirst, Benjamin A. Garcia and Miguel Ramalho-Santos', 'description' => '<section xmlns="" xmlns:fn="http://www.w3.org/2005/xpath-functions" xmlns:meta="http://www.springer.com/app/meta" class="Abstract" id="Abs1" lang="en"> <div class="js-CollapseSection"> <div xmlns:func="http://oscar.fig.bmc.com" xmlns="http://www.w3.org/1999/xhtml" class="AbstractSection" id="ASec1"> <h3 xmlns="" class="Heading">Background</h3> <p id="Par1" class="Para">Histone methylation patterns regulate gene expression and are highly dynamic during development. The erasure of histone methylation is carried out by histone demethylase enzymes. We had previously shown that vitamin C enhances the activity of Tet enzymes in embryonic stem (ES) cells, leading to DNA demethylation and activation of germline genes.</p> </div> <div xmlns:func="http://oscar.fig.bmc.com" xmlns="http://www.w3.org/1999/xhtml" class="AbstractSection" id="ASec2"> <h3 xmlns="" class="Heading">Results</h3> <p id="Par2" class="Para">We report here that vitamin C induces a remarkably specific demethylation of histone H3 lysine 9 dimethylation (H3K9me2) in naïve ES cells. Vitamin C treatment reduces global levels of H3K9me2, but not other histone methylation marks analyzed, as measured by western blot, immunofluorescence and mass spectrometry. Vitamin C leads to widespread loss of H3K9me2 at large chromosomal domains as well as gene promoters and repeat elements. Vitamin C-induced loss of H3K9me2 occurs rapidly within 24 h and is reversible. Importantly, we found that the histone demethylases Kdm3a and Kdm3b are required for vitamin C-induced demethylation of H3K9me2. Moreover, we show that vitamin C-induced Kdm3a/b-mediated H3K9me2 demethylation and Tet-mediated DNA demethylation are independent processes at specific loci. Lastly, we document Kdm3a/b are partially required for the upregulation of germline genes by vitamin C.</p> </div> <div xmlns:func="http://oscar.fig.bmc.com" xmlns="http://www.w3.org/1999/xhtml" class="AbstractSection" id="ASec3"> <h3 xmlns="" class="Heading">Conclusions</h3> <p id="Par3" class="Para">These results reveal a specific role for vitamin C in histone demethylation in ES cells and document that DNA methylation and H3K9me2 cooperate to silence germline genes in pluripotent cells.</p> </div> </div> </section>', 'date' => '2017-07-12', 'pmid' => 'https://epigeneticsandchromatin.biomedcentral.com/articles/10.1186/s13072-017-0143-3', 'doi' => 'https://doi.org/10.1186/s13072-017-0143-3', 'modified' => '2017-08-23 14:47:51', 'created' => '2017-07-29 08:04:03', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 19 => array( 'id' => '3229', 'name' => 'A chronic low dose of Δ9-tetrahydrocannabinol (THC) restores cognitive function in old mice', 'authors' => 'Bilkei-Gorzo A. et al.', 'description' => '<p>The balance between detrimental, pro-aging, often stochastic processes and counteracting homeostatic mechanisms largely determines the progression of aging. There is substantial evidence suggesting that the endocannabinoid system (ECS) is part of the latter system because it modulates the physiological processes underlying aging. The activity of the ECS declines during aging, as CB1 receptor expression and coupling to G proteins are reduced in the brain tissues of older animals and the levels of the major endocannabinoid 2-arachidonoylglycerol (2-AG) are lower. However, a direct link between endocannabinoid tone and aging symptoms has not been demonstrated. Here we show that a low dose of Δ<sup>9</sup>-tetrahydrocannabinol (THC) reversed the age-related decline in cognitive performance of mice aged 12 and 18 months. This behavioral effect was accompanied by enhanced expression of synaptic marker proteins and increased hippocampal spine density. THC treatment restored hippocampal gene transcription patterns such that the expression profiles of THC-treated mice aged 12 months closely resembled those of THC-free animals aged 2 months. The transcriptional effects of THC were critically dependent on glutamatergic CB1 receptors and histone acetylation, as their inhibition blocked the beneficial effects of THC. Thus, restoration of CB1 signaling in old individuals could be an effective strategy to treat age-related cognitive impairments.</p>', 'date' => '2017-06-01', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pubmed/28481360', 'doi' => '', 'modified' => '2017-08-23 14:54:30', 'created' => '2017-08-23 14:54:30', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 20 => array( 'id' => '3169', 'name' => 'PPARγ Links BMP2 and TGFβ1 Pathways in Vascular Smooth Muscle Cells, Regulating Cell Proliferation and Glucose Metabolism', 'authors' => 'Laurent Calvier, Philippe Chouvarine, Ekaterina Legchenko, Nadine Hoffmann, Jonas Geldner, Paul Borchert, Danny Jonigk, Miklos M. Mozes, Georg Hansmann', 'description' => '<p><span>BMP2 and TGFβ1 are functional antagonists of pathological remodeling in the arteries, heart, and lung; however, the mechanisms in VSMCs, and their disturbance in pulmonary arterial hypertension (PAH), are unclear. We found a pro-proliferative TGFβ1-Stat3-FoxO1 axis in VSMCs, and PPARγ as inhibitory regulator of TGFβ1-Stat3-FoxO1 and TGFβ1-Smad3/4, by physically interacting with Stat3 and Smad3. TGFβ1 induces fibrosis-related genes and miR-130a/301b, suppressing PPARγ. Conversely, PPARγ inhibits TGFβ1-induced mitochondrial activation and VSMC proliferation, and regulates two glucose metabolism-related enzymes, platelet isoform of phosphofructokinase (PFKP, a PPARγ target, via miR-331-5p) and protein phosphatase 1 regulatory subunit 3G (PPP1R3G, a Smad3 target). PPARγ knockdown/deletion in VSMCs activates TGFβ1 signaling. The PPARγ agonist pioglitazone reverses PAH and inhibits the TGFβ1-Stat3-FoxO1 axis in TGFβ1-overexpressing mice. We identified PPARγ as a missing link between BMP2 and TGFβ1 pathways in VSMCs. PPARγ activation can be beneficial in TGFβ1-associated diseases, such as PAH, parenchymal lung diseases, and Marfan’s syndrome.</span></p>', 'date' => '2017-05-02', 'pmid' => 'http://www.cell.com/cell-metabolism/abstract/S1550-4131(17)30163-8', 'doi' => 'http://dx.doi.org/10.1016/j.cmet.2017.03.011', 'modified' => '2017-05-11 11:30:23', 'created' => '2017-05-09 19:10:49', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 21 => array( 'id' => '3155', 'name' => 'JMJD3 aids in reprogramming of bone marrow progenitor cells to hepatic phenotype through epigenetic activation of hepatic transcription factors', 'authors' => 'Veena Kochat, Zaffar Equbal, Prakash Baligar, Vikash Kumar, Madhulika Srivastava, Asok Mukhopadhyay', 'description' => '<p><span>The strictly regulated unidirectional differentiation program in some somatic stem/progenitor cells has been found to be modified in the ectopic site (tissue) undergoing regeneration. In these cases, the lineage barrier is crossed by either heterotypic cell fusion or direct differentiation. Though studies have shown the role of coordinated genetic and epigenetic mechanisms in cellular development and differentiation, how the lineage fate of adult bone marrow progenitor cells (BMPCs) is reprogrammed during liver regeneration and whether this lineage switch is stably maintained are not clearly understood. In the present study, we wanted to decipher genetic and epigenetic mechanisms that involve in lineage reprogramming of BMPCs into hepatocyte-like cells. Here we report dynamic transcriptional change during cellular reprogramming of BMPCs to hepatocytes and dissect the epigenetic switch mechanism of BM cell-mediated liver regeneration after acute injury. Genome-wide gene expression analysis in BM-derived hepatocytes, isolated after 1 month and 5 months of transplantation, showed induction of hepatic transcriptional program and diminishing of donor signatures over the time. The transcriptional reprogramming of BM-derived cells was found to be the result of enrichment of activating marks (H3K4me3 and H3K9Ac) and loss of repressive marks (H3K27me3 and H3K9me3) at the promoters of hepatic transcription factors (HTFs). Further analyses showed that BMPCs possess bivalent histone marks (H3K4me3 and H3K27me3) at the promoters of crucial HTFs. H3K27 methylation dynamics at the HTFs was antagonistically regulated by EZH2 and JMJD3. Preliminary evidence suggests a role of JMJD3 in removal of H3K27me3 mark from promoters of HTFs, thus activating epigenetically poised hepatic genes in BMPCs prior to partial nuclear reprogramming. The importance of JMJD3 in reprogramming of BMPCs to hepatic phenotype was confirmed by inhibiting catalytic function of the enzyme using small molecule GSK-J4. Our results propose a potential role of JMJD3 in lineage conversion of BM cells into hepatic lineage.</span></p>', 'date' => '2017-03-22', 'pmid' => 'http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173977', 'doi' => 'http://dx.doi.org/10.1371/journal.pone.0173977', 'modified' => '2017-04-09 09:10:08', 'created' => '2017-04-09 09:10:08', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 22 => array( 'id' => '3124', 'name' => 'Chromatin Domain Organization of TCRb locus and its perturbation by ectopic CTCF binding', 'authors' => 'Rawat P. et al.', 'description' => '<p>CTCF mediated chromatin interactions influence organization and function of mammalian genome in diverse ways. We analyzed the interactions amongst CTCF binding sites (CBS) at murine TCRb locus to discern the role of CTCF mediated interactions in regulation of transcription and VDJ recombination. 3C analysis revealed thymocyte specific long-range intrachromosomal interactions amongst various CBS across the locus that were relevant for defining the limit of enhancer Eb regulated Recombination Centre (RC) and for facilitating the spatial proximity of Trbv segments to RC. Ectopic CTCF binding in the RC region, effected via genetic manipulation, altered CBS directed chromatin loops, interfered with RC establishment and reduced the spatial proximity of RC with Trbv segments. Changes in chromatin loop organization by ectopic CTCF binding were relatively modest but influenced transcription and VDJ recombination dramatically. Besides revealing the importance of CTCF mediated chromatin organization for TCRb regulation, the observed chromatin loops were consistent with the emerging idea that CBS orientations influence chromatin loop organization and underscored the importance of CBS orientations for defining chromatin architecture that supports VDJ recombination. Further, our study suggests that in addition to mediating long-range chromatin interactions, CTCF influences intricate configuration of chromatin loops that govern functional interactions between elements.</p>', 'date' => '2017-01-30', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pubmed/28137913', 'doi' => '', 'modified' => '2017-02-15 17:35:17', 'created' => '2017-02-15 17:35:17', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 23 => array( 'id' => '3085', 'name' => 'Genomic Characterization of Metformin Hepatic Response', 'authors' => 'Luizon M.R. et al.', 'description' => '<p>Metformin is used as a first-line therapy for type 2 diabetes (T2D) and prescribed for numerous other diseases. However, its mechanism of action in the liver has yet to be characterized in a systematic manner. To comprehensively identify genes and regulatory elements associated with metformin treatment, we carried out RNA-seq and ChIP-seq (H3K27ac, H3K27me3) on primary human hepatocytes from the same donor treated with vehicle control, metformin or metformin and compound C, an AMP-activated protein kinase (AMPK) inhibitor (allowing to identify AMPK-independent pathways). We identified thousands of metformin responsive AMPK-dependent and AMPK-independent differentially expressed genes and regulatory elements. We functionally validated several elements for metformin-induced promoter and enhancer activity. These include an enhancer in an ataxia telangiectasia mutated (ATM) intron that has SNPs in linkage disequilibrium with a metformin treatment response GWAS lead SNP (rs11212617) that showed increased enhancer activity for the associated haplotype. Expression quantitative trait locus (eQTL) liver analysis and CRISPR activation suggest that this enhancer could be regulating ATM, which has a known role in AMPK activation, and potentially also EXPH5 and DDX10, its neighboring genes. Using ChIP-seq and siRNA knockdown, we further show that activating transcription factor 3 (ATF3), our top metformin upregulated AMPK-dependent gene, could have an important role in gluconeogenesis repression. Our findings provide a genome-wide representation of metformin hepatic response, highlight important sequences that could be associated with interindividual variability in glycemic response to metformin and identify novel T2D treatment candidates.</p>', 'date' => '2016-11-30', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pubmed/27902686', 'doi' => '', 'modified' => '2016-12-20 10:41:29', 'created' => '2016-12-20 10:41:29', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 24 => array( 'id' => '3028', 'name' => 'DNA demethylation of inflammasome-associated genes is enhanced in patients with cryopyrin-associated periodic syndromes', 'authors' => 'Vento-Tormo R et al.', 'description' => '<h4>BACKGROUND:</h4> <p><abstracttext label="BACKGROUND" nlmcategory="BACKGROUND">Inflammasomes are cytosolic multiprotein complexes in macrophages. They assemble after infection- or stress-associated stimuli, activating both caspase-1-mediated inflammatory cytokine secretion and pyroptosis. Increased inflammasome activity resulting from gene mutations is related to monogenic autoinflammatory syndromes. However, variable penetrance among patients with the same gene mutations suggests involvement of additional mechanisms associated with inflammasome gene regulation.</abstracttext></p> <h4>OBJECTIVE:</h4> <p><abstracttext label="OBJECTIVE" nlmcategory="OBJECTIVE">We sought to investigate the role of DNA demethylation in activating inflammasome genes during macrophage differentiation and monocyte activation in healthy control subjects and patients with autoinflammatory syndrome.</abstracttext></p> <h4>METHODS:</h4> <p><abstracttext label="METHODS" nlmcategory="METHODS">Inflammasome-related genes were tested for DNA methylation and mRNA levels by using bisulfite pyrosequencing and quantitative RT-PCR in monocytes in vitro differentiated to macrophages and exposed to inflammatory conditions. The contribution of Tet methylcytosine dioxygenase 2 (TET2) and nuclear factor κB to DNA demethylation was tested by using chromatin immunoprecipitation, small interfering RNA-mediated downregulation, and pharmacologic inhibition.</abstracttext></p> <h4>RESULTS:</h4> <p><abstracttext label="RESULTS" nlmcategory="RESULTS">We observed that inflammasome-related genes are rapidly demethylated in both monocyte-to-macrophage differentiation and on monocyte activation. Demethylation associates with increased gene expression, and both mechanisms are impaired when TET2 and nuclear factor κB are downregulated. We analyzed DNA methylation levels of inflammasome-related genes in patients with cryopyrin-associated periodic syndromes (CAPS) and familial Mediterranean fever, 2 archetypical monogenic autoinflammatory syndromes. Under the above conditions, monocytes from untreated patients with CAPS undergo more efficient DNA demethylation than those of healthy subjects. Interestingly, patients with CAPS treated with anti-IL-1 drugs display methylation levels similar to those of healthy control subjects.</abstracttext></p> <h4>CONCLUSION:</h4> <p><abstracttext label="CONCLUSION" nlmcategory="CONCLUSIONS">Our study is the first to demonstrate the involvement of DNA methylation-associated alterations in patients with monogenic autoinflammatory disease and opens up possibilities for novel clinical markers.</abstracttext></p>', 'date' => '2016-07-06', 'pmid' => 'http://www.ncbi.nlm.nih.gov/pubmed/27394913', 'doi' => '', 'modified' => '2016-09-08 15:10:24', 'created' => '2016-09-08 15:10:24', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 25 => array( 'id' => '2938', 'name' => 'Molecular mechanisms in H2O2-induced increase in AT1 receptor gene expression in cardiac fibroblasts: a role for endogenously generated Angiotensin II.', 'authors' => 'Anupama V et al.', 'description' => '<p>The AT1 receptor (AT1R) mediates the manifold actions of Angiotensin II in the cardiovascular system. This study probed the molecular mechanisms that link altered redox status to AT1R expression in cardiac fibroblasts. Real-time PCR and western blot analysis showed that H<sub>2</sub>O<sub>2</sub> enhances AT1R mRNA and protein expression via NADPH oxidase-dependent reactive oxygen species induction. Activation of NF-κB and AP-1, demonstrated by electrophoretic mobility shift assay, abolition of AT1R expression by their inhibitors, Bay-11-7085 and SR11302, respectively, and luciferase and chromatin immunoprecipitation assays confirmed transcriptional control of AT1R by NF-κB and AP-1 in H<sub>2</sub>O<sub>2</sub>-treated cells. Further, inhibition of ERK1/2, p38 MAPK and c-Jun N-terminal kinase (JNK) using chemical inhibitors or by RNA interference attenuated AT1R expression. Inhibition of the MAPKs showed that while ERK1/2 and p38 MAPK suffice for NF-κB activation, all three kinases are required for AP-1 activation. H<sub>2</sub>O<sub>2</sub> also increased collagen type I mRNA and protein expression. Interestingly, the AT1R antagonist, candesartan, attenuated H<sub>2</sub>O<sub>2</sub>-stimulated AT1R and collagen mRNA and protein expression, suggesting that H<sub>2</sub>O<sub>2</sub> up-regulates AT1R and collagen expression via local Angiotensin II generation, which was confirmed by Real-time PCR and ELISA. To conclude, oxidative stress enhances AT1R gene expression in cardiac fibroblasts by a complex mechanism involving the redox-sensitive transcription factors NF-κB and AP-1 that are activated by the co-ordinated action of ERK1/2, p38 MAPK and JNK. Importantly, by causally linking oxidative stress to Angiotensin II and AT1R up-regulation in cardiac fibroblasts, this study offers a novel perspective on the pathogenesis of cardiovascular diseases associated with oxidative stress.</p>', 'date' => '2016-05-18', 'pmid' => 'http://www.ncbi.nlm.nih.gov/pubmed/27208880', 'doi' => ' 10.1016/j.yjmcc.2016.05.010', 'modified' => '2016-05-27 10:16:58', 'created' => '2016-05-27 10:16:58', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 26 => array( 'id' => '2956', 'name' => 'Epigenetic alterations of CYP19A1 gene in Cumulus cells and its relevance to infertility in endometriosis', 'authors' => 'Hosseini E et al.', 'description' => '<div class=""> <h4>PURPOSE:</h4> <p><abstracttext label="PURPOSE" nlmcategory="OBJECTIVE">The purpose of the present study was to investigate the epigenetic mechanisms responsible for the aberrant aromatase expression (CYP19A1) in Cumulus Cells (CCs) of infertile endometriosis patients.</abstracttext></p> <h4>METHOD:</h4> <p><abstracttext label="METHOD" nlmcategory="METHODS">Cumulus cells were obtained from 24 infertile patients with and without endometriosis who underwent ovarian stimulation for intracytoplasmic sperm injection. Expression of CYP19A1 gene was quantified using Reverse Transcription Q-PCR. DNA methylation, histone modifications, and binding of Estrogen Receptor, ERβ to regulatory DNA sequences of CYP19A1 gene were evaluated by Chromatin ImmunoPrecipitation (ChIP) assay.</abstracttext></p> <h4>RESULTS:</h4> <p><abstracttext label="RESULTS" nlmcategory="RESULTS">CYP19A1 gene expression in CCs of endometriosis patients was significantly lower than the control group (P = 0.04). Higher incorporation of MeCP2 (as a marker of DNA methylation) on PII and PI.4 promoters, and hypoacetylation at H3K9 in PII and hypermethylation at H3K9 in PI.4 were observed in CYP19A1 gene in endometriosis patients (P < 0.05). Moreover, a decreased level of ERβ binding to PII and an increased level of its binding to PI.3 and PI.4 promoters of CYP19A1 were observed in endometriosis patients when compared to control.</abstracttext></p> <h4>CONCLUSION:</h4> <p><abstracttext label="CONCLUSION" nlmcategory="CONCLUSIONS">Significant reduction of CYP19A1 gene expression in CCs of endometriosis patients may be the result of epigenetic alterations in its regulatory regions, either by DNA methylation or histone modifications. These epigenetic changes along with differential binding of ERβ (as a transcription factor) in CYP19A1 promoters may impair follicular steroidogenesis, leading to poor Oocyte and embryo condition in endometriosis patients.</abstracttext></p> </div>', 'date' => '2016-05-11', 'pmid' => 'http://www.ncbi.nlm.nih.gov/pubmed/27167072', 'doi' => '', 'modified' => '2016-06-15 16:04:13', 'created' => '2016-06-15 16:04:13', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 27 => array( 'id' => '3064', 'name' => 'Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death', 'authors' => 'Bouilloux F. et al.', 'description' => '<p>Although cardio-vascular incidents and sudden cardiac death (SCD) are among the leading causes of premature death in the general population, the origins remain unidentified in many cases. Genome-wide association studies have identified Meis1 as a risk factor for SCD. We report that Meis1 inactivation in the mouse neural crest leads to an altered sympatho-vagal regulation of cardiac rhythmicity in adults characterized by a chronotropic incompetence and cardiac conduction defects, thus increasing the susceptibility to SCD. We demonstrated that Meis1 is a major regulator of sympathetic target-field innervation and that Meis1 deficient sympathetic neurons die by apoptosis from early embryonic stages to perinatal stages. In addition, we showed that Meis1 regulates the transcription of key molecules necessary for the endosomal machinery. Accordingly, the traffic of Rab5(+) endosomes is severely altered in Meis1-inactivated sympathetic neurons. These results suggest that Meis1 interacts with various trophic factors signaling pathways during postmitotic neurons differentiation.</p>', 'date' => '2016-02-08', 'pmid' => 'https://www.ncbi.nlm.nih.gov/pubmed/26857994', 'doi' => '', 'modified' => '2016-11-04 16:50:53', 'created' => '2016-11-04 16:50:53', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 28 => array( 'id' => '2831', 'name' => 'Desensitization and incomplete recovery of hepatic target genes after chronic thyroid hormone treatment and withdrawal in male adult mice', 'authors' => 'Kenji Ohba, Melvin Khee-Shing Leow, Brijesh Kumar Singh, Rohit Anthony Sinha, Ronny Lesmana,Xiao-Hui Liao, Paul Michael Yen', 'description' => '<p>Here, we examined changes in hepatic gene expression and serum TH/thyrotropin (TSH) levels in adult male mice treated either with a single T3 (20 g/100 g body weight) injection (acute T3) or daily injections for 14 days (chronic T3) followed by 10 days withdrawal. Chromatin immunoprecipitation analysis of representative positively-regulated target genes suggested that acetylation of H3K9/K14 was associated with acute stimulation, whereas trimethylation of H3K4 was associated with chronic stimulation. In an in vivo model of chronic intrahepatic hyperthyroidism since birth, adult male monocarboxylate transporter-8 knockout mice also demonstrated desensitization of most acutely stimulated target genes that were examined. In summary, we have identified transcriptional desensitization and incomplete recovery of gene expression during chronic hyperthyroidism and recovery. Our findings may be a potential reason for discordance between clinical symptoms and serum TH levels observed in these conditions.</p>', 'date' => '2016-02-03', 'pmid' => 'http://press.endocrine.org/doi/pdf/10.1210/en.2015-1848', 'doi' => '10.1210/en.2015-1848', 'modified' => '2016-03-01 04:44:54', 'created' => '2016-03-01 04:44:54', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 29 => array( 'id' => '2965', 'name' => 'Molecular basis and functional significance of Angiotensin II-induced increase in Discoidin Domain Receptor 2 gene expression in cardiac fibroblasts', 'authors' => 'George M et al.', 'description' => '<p>Delineation of mechanisms underlying the regulation of fibrosis-related genes in the heart is an important clinical goal as cardiac fibrosis is a major cause of myocardial dysfunction. This study probed the regulation of Discoidin Domain Receptor 2 (DDR2) gene expression and the regulatory links between Angiotensin II, DDR2 and collagen in Angiotensin II-stimulated cardiac fibroblasts. Real-time PCR and western blot analyses showed that Angiotensin II enhances DDR2 mRNA and protein expression in rat cardiac fibroblasts via NADPH oxidase-dependent reactive oxygen species induction. NF-κB activation, demonstrated by gel shift assay, abolition of DDR2 expression upon NF-κB inhibition, and luciferase and chromatin immunoprecipitation assays confirmed transcriptional control of DDR2 by NF-κB in Angiotensin II-treated cells. Inhibitors of Phospholipase C and Protein kinase C prevented Angiotensin II-dependent p38 MAPK phosphorylation that in turn blocked NF-κB activation. Angiotensin II also enhanced collagen gene expression. Importantly, the stimulatory effects of Angiotensin II on DDR2 and collagen were inter-dependent as siRNA-mediated silencing of one abolished the other. Angiotensin II promoted ERK1/2 phosphorylation whose inhibition attenuated Angiotensin II-stimulation of collagen but not DDR2. Furthermore, DDR2 knockdown prevented Angiotensin II-induced ERK1/2 phosphorylation, indicating that DDR2-dependent ERK1/2 activation enhances collagen expression in cells exposed to Angiotensin II. DDR2 knockdown was also associated with compromised wound healing response to Angiotensin II. To conclude, Angiotensin II promotes NF-κB activation that up-regulates DDR2 transcription. A reciprocal regulatory relationship between DDR2 and collagen, involving cross-talk between the GPCR and RTK pathways, is central to Angiotensin II-induced increase in collagen expression in cardiac fibroblasts.</p>', 'date' => '2016-01-01', 'pmid' => 'http://www.ncbi.nlm.nih.gov/pubmed/26674152', 'doi' => '10.1016/j.yjmcc.2015.12.004', 'modified' => '2016-06-28 09:38:12', 'created' => '2016-06-28 09:38:12', 'ProductsPublication' => array( [maximum depth reached] ) ), (int) 30 => array( 'id' => '2875', 'name' => 'An Insulator Element Located at the Cyclin B1 Interacting Protein 1 Gene Locus Is Highly Conserved among Mammalian Species', 'authors' => 'Yoshida W, Tomikawa J, Inaki M, Kimura H, Onodera M, Hata K, Nakabayashi K', 'description' => '<p>Insulators are <em>cis</em>-elements that control the direction of enhancer and silencer activities (enhancer-blocking) and protect genes from silencing by heterochromatinization (barrier activity). Understanding insulators is critical to elucidate gene regulatory mechanisms at chromosomal domain levels. Here, we focused on a genomic region upstream of the mouse <em>Ccnb1ip1</em> (cyclin B1 interacting protein 1) gene that was methylated in E9.5 embryos of the C57BL/6 strain, but unmethylated in those of the 129X1/SvJ and JF1/Ms strains. We hypothesized the existence of an insulator-type element that prevents the spread of DNA methylation within the 1.8 kbp segment, and actually identified a 242-bp and a 185-bp fragments that were located adjacent to each other and showed insulator and enhancer activities, respectively, in reporter assays. We designated these genomic regions as the <em>Ccnb1ip1</em> insulator and the <em>Ccnb1ip1</em> enhancer. The <em>Ccnb1ip1</em> insulator showed enhancer-blocking activity in the luciferase assays and barrier activity in the colony formation assays. Further examination of the <em>Ccnb1ip1</em> locus in other mammalian species revealed that the insulator and enhancer are highly conserved among a wide variety of species, and are located immediately upstream of the transcriptional start site of <em>Ccnb1ip1</em>. These newly identified cis-elements may be involved in transcriptional regulation of <em>Ccnb1ip1</em>, which is important in meiotic crossing-over and G2/M transition of the mitotic cell cycle.</p>', 'date' => '2015-06-25', 'pmid' => 'http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481373/', 'doi' => '10.1371/journal.pone.0131204', 'modified' => '2016-03-30 10:47:38', 'created' => '2016-03-30 10:47:38', 'ProductsPublication' => array( [maximum depth reached] ) ) ), 'Testimonial' => array(), 'Area' => array(), 'SafetySheet' => array( (int) 0 => array( 'id' => '670', 'name' => 'LowCell ChIP kit protein A SDS GB en', 'language' => 'en', 'url' => 'files/SDS/LowCell-ChIP/SDS-C01010070-LowCell_ChIP_kit_protein_A-GB-en-1_0.pdf', 'countries' => 'GB', 'modified' => '2020-07-01 17:09:37', 'created' => '2020-07-01 17:09:37', 'ProductsSafetySheet' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '672', 'name' => 'LowCell ChIP kit protein A SDS US en', 'language' => 'en', 'url' => 'files/SDS/LowCell-ChIP/SDS-C01010070-LowCell_ChIP_kit_protein_A-US-en-1_0.pdf', 'countries' => 'US', 'modified' => '2020-07-01 17:10:39', 'created' => '2020-07-01 17:10:39', 'ProductsSafetySheet' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '666', 'name' => 'LowCell ChIP kit protein A SDS BE nl', 'language' => 'nl', 'url' => 'files/SDS/LowCell-ChIP/SDS-C01010070-LowCell_ChIP_kit_protein_A-BE-nl-1_0.pdf', 'countries' => 'BE', 'modified' => '2020-07-01 17:07:36', 'created' => '2020-07-01 17:07:36', 'ProductsSafetySheet' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '665', 'name' => 'LowCell ChIP kit protein A SDS BE fr', 'language' => 'fr', 'url' => 'files/SDS/LowCell-ChIP/SDS-C01010070-LowCell_ChIP_kit_protein_A-BE-fr-1_0.pdf', 'countries' => 'BE', 'modified' => '2020-07-01 17:07:12', 'created' => '2020-07-01 17:07:12', 'ProductsSafetySheet' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '669', 'name' => 'LowCell ChIP kit protein A SDS FR fr', 'language' => 'fr', 'url' => 'files/SDS/LowCell-ChIP/SDS-C01010070-LowCell_ChIP_kit_protein_A-FR-fr-1_0.pdf', 'countries' => 'FR', 'modified' => '2020-07-01 17:09:12', 'created' => '2020-07-01 17:09:12', 'ProductsSafetySheet' => array( [maximum depth reached] ) ), (int) 5 => array( 'id' => '668', 'name' => 'LowCell ChIP kit protein A SDS ES es', 'language' => 'es', 'url' => 'files/SDS/LowCell-ChIP/SDS-C01010070-LowCell_ChIP_kit_protein_A-ES-es-1_0.pdf', 'countries' => 'ES', 'modified' => '2020-07-01 17:08:34', 'created' => '2020-07-01 17:08:34', 'ProductsSafetySheet' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '667', 'name' => 'LowCell ChIP kit protein A SDS DE de', 'language' => 'de', 'url' => 'files/SDS/LowCell-ChIP/SDS-C01010070-LowCell_ChIP_kit_protein_A-DE-de-1_0.pdf', 'countries' => 'DE', 'modified' => '2020-07-01 17:08:05', 'created' => '2020-07-01 17:08:05', 'ProductsSafetySheet' => array( [maximum depth reached] ) ), (int) 7 => array( 'id' => '671', 'name' => 'LowCell ChIP kit protein A SDS JP ja', 'language' => 'ja', 'url' => 'files/SDS/LowCell-ChIP/SDS-C01010070-LowCell_ChIP_kit_protein_A-JP-ja-1_0.pdf', 'countries' => 'JP', 'modified' => '2020-07-01 17:10:05', 'created' => '2020-07-01 17:10:05', 'ProductsSafetySheet' => array( [maximum depth reached] ) ) ) ) $meta_canonical = 'https://www.diagenode.com/en/p/lowcell-chip-kit-protein-a-x48-48-rxns' $country = 'US' $countries_allowed = array( (int) 0 => 'CA', (int) 1 => 'US', (int) 2 => 'IE', (int) 3 => 'GB', (int) 4 => 'DK', (int) 5 => 'NO', (int) 6 => 'SE', (int) 7 => 'FI', (int) 8 => 'NL', (int) 9 => 'BE', (int) 10 => 'LU', (int) 11 => 'FR', (int) 12 => 'DE', (int) 13 => 'CH', (int) 14 => 'AT', (int) 15 => 'ES', (int) 16 => 'IT', (int) 17 => 'PT' ) $outsource = false $other_formats = array() $pro = array( 'id' => '1847', 'antibody_id' => null, 'name' => 'LowCell# ChIP kit protein A x16', 'description' => '<p>The LowCell# ChIP kit protein A is one of Diagenode old generation ChIP kits, still present in the catalogue. At present we highly recommend our new generation <strong>True MicroChIP kit</strong> with optimized reagents and protocol to enable successful <strong>ChIP/ChIP-seq</strong> on as few as <strong>10 000 cells</strong>. Read more about our <a href="https://www.diagenode.com/en/p/true-microchip-kit-x16-16-rxns">True MicroChIP kit</a>.</p> <p><span> </span></p>', 'label1' => 'Characteristics', 'info1' => '<p>The LowCell# ChIP kit has been validated using chromatin sheared by sonication using the Bioruptor<sup>®</sup>. The Kit includes a DNA purifying slurry for an extra-fast method to purify your IP’d material (for qPCR analysis).</p>', 'label2' => '', 'info2' => '', 'label3' => '', 'info3' => '', 'format' => '16 rxns', 'catalog_number' => 'C01010070', 'old_catalog_number' => 'kch-maglow-A16', 'sf_code' => 'C01010070-', 'type' => 'RFR', 'search_order' => '04-undefined', 'price_EUR' => '413', 'price_USD' => '418', 'price_GBP' => '378', 'price_JPY' => '81000', 'price_CNY' => '', 'price_AUD' => '1045', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => false, 'master' => false, 'last_datasheet_update' => '0000-00-00', 'slug' => 'lowcell-chip-kit-protein-a-x16-16-rxns', 'meta_title' => 'LowCell# ChIP kit protein A x16', 'meta_keywords' => '', 'meta_description' => 'LowCell# ChIP kit protein A x16', 'modified' => '2021-06-30 15:57:53', 'created' => '2015-06-29 14:08:20', 'ProductsGroup' => array( 'id' => '105', 'product_id' => '1847', 'group_id' => '96' ) ) $edit = '' $testimonials = '' $featured_testimonials = '' $related_products = '<li> <div class="row"> <div class="small-12 columns"> <a href="/en/p/bioruptor-pico-sonication-device"><img src="/img/product/shearing_technologies/bioruptor_pico.jpg" alt="Bioruptor pico next gen sequencing " class="th"/></a> </div> <div class="small-12 columns"> <div class="small-6 columns" style="padding-left:0px;padding-right:0px;margin-top:-6px;margin-left:-1px"> <span class="success label" style="">B01060010</span> </div> <div class="small-6 columns text-right" style="padding-left:0px;padding-right:0px;margin-top:-6px"> <!--a href="#" style="color:#B21329"><i class="fa fa-info-circle"></i></a--> </div> </div> <div class="small-12 columns" > <h6 style="height:60px">Bioruptor® Pico sonication device</h6> </div> </div> </li> <li> <div class="row"> <div class="small-12 columns"> <a href="/en/p/diamag02-magnetic-rack-1-unit"><img src="/img/product/reagents/diamag02.png" alt="some alt" class="th"/></a> </div> <div class="small-12 columns"> <div class="small-6 columns" style="padding-left:0px;padding-right:0px;margin-top:-6px;margin-left:-1px"> <span class="success label" style="">B04000001</span> </div> <div class="small-6 columns text-right" style="padding-left:0px;padding-right:0px;margin-top:-6px"> <!--a href="#" style="color:#B21329"><i class="fa fa-info-circle"></i></a--> <!-- BEGIN: ADD TO CART MODAL --><div id="cartModal-1819" class="reveal-modal small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <form action="/en/carts/add/1819" id="CartAdd/1819Form" method="post" accept-charset="utf-8"><div style="display:none;"><input type="hidden" name="_method" value="POST"/></div><input type="hidden" name="data[Cart][product_id]" value="1819" id="CartProductId"/> <div class="row"> <div class="small-12 medium-12 large-12 columns"> <p>Add <input name="data[Cart][quantity]" placeholder="1" value="1" min="1" style="width:60px;display:inline" type="number" id="CartQuantity" required="required"/> <strong> DiaMag 0.2ml - magnetic rack</strong> to my shopping cart.</p> <div class="row"> <div class="small-6 medium-6 large-6 columns"> <button class="alert small button expand" onclick="$(this).addToCart('DiaMag 0.2ml - magnetic rack', 'B04000001', '225', $('#CartQuantity').val());" name="checkout" id="checkout" value="checkout" type="submit">Checkout</button> </div> <div class="small-6 medium-6 large-6 columns"> <button class="alert small button expand" onclick="$(this).addToCart('DiaMag 0.2ml - magnetic rack', 'B04000001', '225', $('#CartQuantity').val());" name="keepshop" id="keepshop" type="submit">Keep shopping</button> </div> </div> </div> </div> </form><a class="close-reveal-modal" aria-label="Close">×</a></div><!-- END: ADD TO CART MODAL --><a href="#" id="diamag02-magnetic-rack-1-unit" data-reveal-id="cartModal-1819" class="" style="color:#B21329"><i class="fa fa-cart-plus"></i></a> </div> </div> <div class="small-12 columns" > <h6 style="height:60px">DiaMag 0.2ml - magnetic rack</h6> </div> </div> </li> <li> <div class="row"> <div class="small-12 columns"> <a href="/en/p/h3k4me3-polyclonal-antibody-premium-50-ug-50-ul"><img src="/img/product/antibodies/ab-cuttag-icon.png" alt="cut and tag antibody icon" class="th"/></a> </div> <div class="small-12 columns"> <div class="small-6 columns" style="padding-left:0px;padding-right:0px;margin-top:-6px;margin-left:-1px"> <span class="success label" style="">C15410003-50</span> </div> <div class="small-6 columns text-right" style="padding-left:0px;padding-right:0px;margin-top:-6px"> <!--a href="#" style="color:#B21329"><i class="fa fa-info-circle"></i></a--> <!-- BEGIN: ADD TO CART MODAL --><div id="cartModal-2173" class="reveal-modal small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <form action="/en/carts/add/2173" id="CartAdd/2173Form" method="post" accept-charset="utf-8"><div style="display:none;"><input type="hidden" name="_method" value="POST"/></div><input type="hidden" name="data[Cart][product_id]" value="2173" id="CartProductId"/> <div class="row"> <div class="small-12 medium-12 large-12 columns"> <p>Add <input name="data[Cart][quantity]" placeholder="1" value="1" min="1" style="width:60px;display:inline" type="number" id="CartQuantity" required="required"/> <strong> H3K4me3 polyclonal antibody </strong> to my shopping cart.</p> <div class="row"> <div class="small-6 medium-6 large-6 columns"> <button class="alert small button expand" onclick="$(this).addToCart('H3K4me3 polyclonal antibody ', 'C15410003-50', '450', $('#CartQuantity').val());" name="checkout" id="checkout" value="checkout" type="submit">Checkout</button> </div> <div class="small-6 medium-6 large-6 columns"> <button class="alert small button expand" onclick="$(this).addToCart('H3K4me3 polyclonal antibody ', 'C15410003-50', '450', $('#CartQuantity').val());" name="keepshop" id="keepshop" type="submit">Keep shopping</button> </div> </div> </div> </div> </form><a class="close-reveal-modal" aria-label="Close">×</a></div><!-- END: ADD TO CART MODAL --><a href="#" id="h3k4me3-polyclonal-antibody-premium-50-ug-50-ul" data-reveal-id="cartModal-2173" class="" style="color:#B21329"><i class="fa fa-cart-plus"></i></a> </div> </div> <div class="small-12 columns" > <h6 style="height:60px">H3K4me3 Antibody</h6> </div> </div> </li> <li> <div class="row"> <div class="small-12 columns"> <a href="/en/p/h3k9me3-polyclonal-antibody-premium-50-mg"><img src="/img/product/antibodies/ab-cuttag-icon.png" alt="cut and tag antibody icon" class="th"/></a> </div> <div class="small-12 columns"> <div class="small-6 columns" style="padding-left:0px;padding-right:0px;margin-top:-6px;margin-left:-1px"> <span class="success label" style="">C15410193</span> </div> <div class="small-6 columns text-right" style="padding-left:0px;padding-right:0px;margin-top:-6px"> <!--a href="#" style="color:#B21329"><i class="fa fa-info-circle"></i></a--> <!-- BEGIN: ADD TO CART MODAL --><div id="cartModal-2264" class="reveal-modal small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <form action="/en/carts/add/2264" id="CartAdd/2264Form" method="post" accept-charset="utf-8"><div style="display:none;"><input type="hidden" name="_method" value="POST"/></div><input type="hidden" name="data[Cart][product_id]" value="2264" id="CartProductId"/> <div class="row"> <div class="small-12 medium-12 large-12 columns"> <p>Add <input name="data[Cart][quantity]" placeholder="1" value="1" min="1" style="width:60px;display:inline" type="number" id="CartQuantity" required="required"/> <strong> H3K9me3 Antibody</strong> to my shopping cart.</p> <div class="row"> <div class="small-6 medium-6 large-6 columns"> <button class="alert small button expand" onclick="$(this).addToCart('H3K9me3 Antibody', 'C15410193', '450', $('#CartQuantity').val());" name="checkout" id="checkout" value="checkout" type="submit">Checkout</button> </div> <div class="small-6 medium-6 large-6 columns"> <button class="alert small button expand" onclick="$(this).addToCart('H3K9me3 Antibody', 'C15410193', '450', $('#CartQuantity').val());" name="keepshop" id="keepshop" type="submit">Keep shopping</button> </div> </div> </div> </div> </form><a class="close-reveal-modal" aria-label="Close">×</a></div><!-- END: ADD TO CART MODAL --><a href="#" id="h3k9me3-polyclonal-antibody-premium-50-mg" data-reveal-id="cartModal-2264" class="" style="color:#B21329"><i class="fa fa-cart-plus"></i></a> </div> </div> <div class="small-12 columns" > <h6 style="height:60px">H3K9me3 Antibody</h6> </div> </div> </li> <li> <div class="row"> <div class="small-12 columns"> <a href="/en/p/h3k27me3-polyclonal-antibody-premium-50-mg-27-ml"><img src="/img/product/antibodies/ab-cuttag-icon.png" alt="cut and tag antibody icon" class="th"/></a> </div> <div class="small-12 columns"> <div class="small-6 columns" style="padding-left:0px;padding-right:0px;margin-top:-6px;margin-left:-1px"> <span class="success label" style="">C15410195</span> </div> <div class="small-6 columns text-right" style="padding-left:0px;padding-right:0px;margin-top:-6px"> <!--a href="#" style="color:#B21329"><i class="fa fa-info-circle"></i></a--> <!-- BEGIN: ADD TO CART MODAL --><div id="cartModal-2268" class="reveal-modal small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <form action="/en/carts/add/2268" id="CartAdd/2268Form" method="post" accept-charset="utf-8"><div style="display:none;"><input type="hidden" name="_method" value="POST"/></div><input type="hidden" name="data[Cart][product_id]" value="2268" id="CartProductId"/> <div class="row"> <div class="small-12 medium-12 large-12 columns"> <p>Add <input name="data[Cart][quantity]" placeholder="1" value="1" min="1" style="width:60px;display:inline" type="number" id="CartQuantity" required="required"/> <strong> H3K27me3 Antibody</strong> to my shopping cart.</p> <div class="row"> <div class="small-6 medium-6 large-6 columns"> <button class="alert small button expand" onclick="$(this).addToCart('H3K27me3 Antibody', 'C15410195', '450', $('#CartQuantity').val());" name="checkout" id="checkout" value="checkout" type="submit">Checkout</button> </div> <div class="small-6 medium-6 large-6 columns"> <button class="alert small button expand" onclick="$(this).addToCart('H3K27me3 Antibody', 'C15410195', '450', $('#CartQuantity').val());" name="keepshop" id="keepshop" type="submit">Keep shopping</button> </div> </div> </div> </div> </form><a class="close-reveal-modal" aria-label="Close">×</a></div><!-- END: ADD TO CART MODAL --><a href="#" id="h3k27me3-polyclonal-antibody-premium-50-mg-27-ml" data-reveal-id="cartModal-2268" class="" style="color:#B21329"><i class="fa fa-cart-plus"></i></a> </div> </div> <div class="small-12 columns" > <h6 style="height:60px">H3K27me3 Antibody</h6> </div> </div> </li> <li> <div class="row"> <div class="small-12 columns"> <a href="/en/p/h3k27ac-polyclonal-antibody-premium-50-mg-18-ml"><img src="/img/product/antibodies/ab-cuttag-icon.png" alt="cut and tag antibody icon" class="th"/></a> </div> <div class="small-12 columns"> <div class="small-6 columns" style="padding-left:0px;padding-right:0px;margin-top:-6px;margin-left:-1px"> <span class="success label" style="">C15410196</span> </div> <div class="small-6 columns text-right" style="padding-left:0px;padding-right:0px;margin-top:-6px"> <!--a href="#" style="color:#B21329"><i class="fa fa-info-circle"></i></a--> <!-- BEGIN: ADD TO CART MODAL --><div id="cartModal-2270" class="reveal-modal small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <form action="/en/carts/add/2270" id="CartAdd/2270Form" method="post" accept-charset="utf-8"><div style="display:none;"><input type="hidden" name="_method" value="POST"/></div><input type="hidden" name="data[Cart][product_id]" value="2270" id="CartProductId"/> <div class="row"> <div class="small-12 medium-12 large-12 columns"> <p>Add <input name="data[Cart][quantity]" placeholder="1" value="1" min="1" style="width:60px;display:inline" type="number" id="CartQuantity" required="required"/> <strong> H3K27ac Antibody</strong> to my shopping cart.</p> <div class="row"> <div class="small-6 medium-6 large-6 columns"> <button class="alert small button expand" onclick="$(this).addToCart('H3K27ac Antibody', 'C15410196', '450', $('#CartQuantity').val());" name="checkout" id="checkout" value="checkout" type="submit">Checkout</button> </div> <div class="small-6 medium-6 large-6 columns"> <button class="alert small button expand" onclick="$(this).addToCart('H3K27ac Antibody', 'C15410196', '450', $('#CartQuantity').val());" name="keepshop" id="keepshop" type="submit">Keep shopping</button> </div> </div> </div> </div> </form><a class="close-reveal-modal" aria-label="Close">×</a></div><!-- END: ADD TO CART MODAL --><a href="#" id="h3k27ac-polyclonal-antibody-premium-50-mg-18-ml" data-reveal-id="cartModal-2270" class="" style="color:#B21329"><i class="fa fa-cart-plus"></i></a> </div> </div> <div class="small-12 columns" > <h6 style="height:60px">H3K27ac Antibody</h6> </div> </div> </li> ' $related = array( 'id' => '2270', 'antibody_id' => '109', 'name' => 'H3K27ac Antibody', 'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone <strong>H3 containing the acetylated lysine 27</strong> (<strong>H3K27ac</strong>), using a KLH-conjugated synthetic peptide.</span></p>', 'label1' => 'Validation Data', 'info1' => '<div class="row"> <div class="small-6 columns">A.<img src="https://www.diagenode.com/img/product/antibodies/C15410196-ChIP-Fig1a.png" width="356" /><br /> B.<img src="https://www.diagenode.com/img/product/antibodies/C15410196-ChIP-Fig1b.png" width="356" /></div> <div class="small-6 columns"> <p><strong>Figure 1. ChIP results obtained with the Diagenode antibody directed against H3K27ac</strong></p> <p>Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H3K27ac (Cat. No. C15410196) and optimized PCR primer pairs for qPCR. ChIP was performed with the “Auto Histone ChIP-seq” kit on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 µg of antibody per ChIP experiment was analyzed. IgG (2 µg/IP) was used as a negative IP control. Quantitative PCR was performed with primers for the promoters of the active EIF4A2 and ACTB genes, used as positive controls, and for the inactive TSH2B and MYT1 genes, used as negative controls.</p> <p>Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H3K27ac (Cat. No. C15410196)and optimized PCR primer pairs for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. C01010051), using sheared chromatin from 100,000 cells. A titration consisting of 0.2, 0.5, 1 and 2 µg of antibody per ChIP experiment was analyzed. IgG (1 µg/IP) was used as a negative IP control. Quantitative PCR was performed with primers for the promoters of the active GAPDH and EIF4A2 genes, used as positive controls, and for the coding regions of the inactive MB and MYT1 genes, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis)</p> </div> </div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="extra-spaced"></div> <div class="row"> <div class="small-12 columns"><center> <p>A.<img src="https://www.diagenode.com/img/product/antibodies/C15410196-ChIP-Fig2a.png" /></p> </center><center> <p>B.<img src="https://www.diagenode.com/img/product/antibodies/C15410196-ChIP-Fig2b.png" /></p> </center><center> <p>C.<img src="https://www.diagenode.com/img/product/antibodies/C15410196-ChIP-Fig2c.png" /></p> </center></div> </div> <div class="row"> <div class="small-12 columns"> <p><strong>Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H3K27ac</strong></p> <p>ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 µg of the Diagenode antibody against H3K27ac (Cat. No. C15410196<span class="label-primary"></span>) as described above. The IP’d DNA was subsequently analysed on an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2A shows the peak distribution along the complete human X-chromosome. Figure 2 B and C show the peak distribution in two regions surrounding the EIF4A2 and GAPDH positive control genes, respectively. The position of the PCR amplicon, used for validating the ChIP assay is indicated with an arrow.</p> </div> </div> <div class="row"> <div class="small-12 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410196-fig3.jpg" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><strong>Figure 3. Cut&Tag results obtained with the Diagenode antibody directed against H3K27ac</strong></p> <p>CUT&TAG (Kaya-Okur, H.S., Nat Commun 10, 1930, 2019) was performed on 50,000 K562 cells using 1 µg of the Diagenode antibody against H3K27ac (cat. No. C15410196) and the Diagenode pA-Tn5 transposase (C01070001). The libraries were subsequently analysed on an Illumina NextSeq 500 sequencer (2x75 paired-end reads) according to the manufacturer's instructions. The tags were aligned to the human genome (hg19) using the BWA algorithm. Figure 3 shows the peak distribution in 2 genomic regions surrounding the EIF2S3 gene on the X-chromosome and the CCT5 gene on chromosome 5 (figure 3A and B, respectively).</p> </div> </div> <div class="row"> <div class="small-6 columns"><img src="https://www.diagenode.com/img/product/antibodies/C15410196-ELISA-Fig3.png" /></div> <div class="small-6 columns"> <p><strong>Figure 4. Determination of the antibody titer</strong></p> <p>To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H3K27ac (Cat. No. C15410196<span class="label-primary"></span>). The antigen used was a peptide containing the histone modification of interest. By plotting the absorbance against the antibody dilution (Figure 4), the titer of the antibody was estimated to be 1:8,300.</p> </div> </div> <div class="row"> <div class="small-4 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410196-DB-Fig4.png" /></center></div> <div class="small-8 columns"> <p><strong>Figure 5. Cross reactivity tests using the Diagenode antibody directed against H3K27ac</strong><br />To test the cross reactivity of the Diagenode antibody against H3K27ac (Cat. No. C15410196<span class="label-primary"></span>), a Dot Blot analysis was performed with peptides containing other histone modifications and the unmodified H3K27. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 5 shows a high specificity of the antibody for the modification of interest.</p> </div> </div> <div class="row"> <div class="small-4 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410196-WB-Fig5.png" /></center></div> <div class="small-8 columns"> <p><strong>Figure 6. Western blot analysis using the Diagenode antibody directed against H3K27ac</strong><br />Western blot was performed on whole cell (25 µg, lane 1) and histone extracts (15 µg, lane 2) from HeLa cells, and on 1 µg of recombinant histone H2A, H2B, H3 and H4 (lane 3, 4, 5 and 6, respectively) using the Diagenode antibody against H3K27ac (Cat. No. C1541196). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The marker (in kDa) is shown on the left.</p> </div> </div> <div class="row"> <div class="small-4 columns"><img src="https://www.diagenode.com/img/product/antibodies/C15410196-IF-Fig6.png" /></div> <div class="small-8 columns"> <p><strong>Figure 7. Immunofluorescence using the Diagenode antibody directed against H3K27ac</strong></p> <p>HeLa cells were stained with the Diagenode antibody against H3K27ac (Cat. No. C15410196<span class="label-primary"></span>) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/ TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H3K27ac antibody (top) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown at the bottom.</p> </div> </div>', 'label2' => 'Target Description', 'info2' => '<p style="text-align: justify;">Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of histone H3K27 is associated with active promoters and enhancers.</p>', 'label3' => '', 'info3' => '', 'format' => '50 μg', 'catalog_number' => 'C15410196', 'old_catalog_number' => 'pAb-196-050', 'sf_code' => 'C15410196-D001-000581', 'type' => 'FRE', 'search_order' => '03-Antibody', 'price_EUR' => '460', 'price_USD' => '450', 'price_GBP' => '410', 'price_JPY' => '67700', 'price_CNY' => '', 'price_AUD' => '1125', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => 'January 11, 2021', 'slug' => 'h3k27ac-polyclonal-antibody-premium-50-mg-18-ml', 'meta_title' => 'H3K27ac Antibody - ChIP-seq Grade (C15410196) | Diagenode', 'meta_keywords' => '', 'meta_description' => 'H3K27ac (Histone H3 acetylated at lysine 27) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, CUT&Tag, ELISA, DB, WB and IF. Batch-specific data available on the website. Sample size available. ', 'modified' => '2021-10-20 10:28:57', 'created' => '2015-06-29 14:08:20', 'ProductsRelated' => array( 'id' => '2693', 'product_id' => '1849', 'related_id' => '2270' ), 'Image' => array( (int) 0 => array( 'id' => '1815', 'name' => 'product/antibodies/ab-cuttag-icon.png', 'alt' => 'cut and tag antibody icon', 'modified' => '2021-02-11 12:45:34', 'created' => '2021-02-11 12:45:34', 'ProductsImage' => array( [maximum depth reached] ) ) ) ) $rrbs_service = array( (int) 0 => (int) 1894, (int) 1 => (int) 1895 ) $chipseq_service = array( (int) 0 => (int) 2683, (int) 1 => (int) 1835, (int) 2 => (int) 1836, (int) 3 => (int) 2684, (int) 4 => (int) 1838, (int) 5 => (int) 1839, (int) 6 => (int) 1856 ) $labelize = object(Closure) { } $old_catalog_number = '<br/><small><span style="color:#CCC">(kch-maglow-A48)</span></small>' $country_code = 'US' $label = '<img src="/img/banners/banner-customizer-back.png" alt=""/>' $document = array( 'id' => '37', 'name' => 'Chromatin Brochure', 'description' => '<p>Whether you are experienced or new to the field of chromatin immunoprecipitation, Diagenode has everything you need to make ChIP easy and convenient while ensuring consistent data between samples and experiments. As an expert in the field of epigenetics, Diagenode is committed to providing complete solutions from chromatin shearing reagents, shearing instruments such as the Bioruptor® (the gold standard for chromatin shearing), ChIP kits, the largest number of validated and trusted antibodies on the market, and the SX-8G IP-Star® Compact Automated System to achieve unparalleled productivity and reproducibility.</p>', 'image_id' => null, 'type' => 'Brochure', 'url' => 'files/brochures/Chromatin_Immunoprecipitation_Brochure.pdf', 'slug' => 'chromatin-immunoprecipitation-brochure', 'meta_keywords' => '', 'meta_description' => '', 'modified' => '2022-03-24 12:34:11', 'created' => '2015-07-03 16:05:27', 'ProductsDocument' => array( 'id' => '1108', 'product_id' => '1849', 'document_id' => '37' ) ) $sds = array( 'id' => '671', 'name' => 'LowCell ChIP kit protein A SDS JP ja', 'language' => 'ja', 'url' => 'files/SDS/LowCell-ChIP/SDS-C01010070-LowCell_ChIP_kit_protein_A-JP-ja-1_0.pdf', 'countries' => 'JP', 'modified' => '2020-07-01 17:10:05', 'created' => '2020-07-01 17:10:05', 'ProductsSafetySheet' => array( 'id' => '1237', 'product_id' => '1849', 'safety_sheet_id' => '671' ) ) $publication = array( 'id' => '2875', 'name' => 'An Insulator Element Located at the Cyclin B1 Interacting Protein 1 Gene Locus Is Highly Conserved among Mammalian Species', 'authors' => 'Yoshida W, Tomikawa J, Inaki M, Kimura H, Onodera M, Hata K, Nakabayashi K', 'description' => '<p>Insulators are <em>cis</em>-elements that control the direction of enhancer and silencer activities (enhancer-blocking) and protect genes from silencing by heterochromatinization (barrier activity). Understanding insulators is critical to elucidate gene regulatory mechanisms at chromosomal domain levels. Here, we focused on a genomic region upstream of the mouse <em>Ccnb1ip1</em> (cyclin B1 interacting protein 1) gene that was methylated in E9.5 embryos of the C57BL/6 strain, but unmethylated in those of the 129X1/SvJ and JF1/Ms strains. We hypothesized the existence of an insulator-type element that prevents the spread of DNA methylation within the 1.8 kbp segment, and actually identified a 242-bp and a 185-bp fragments that were located adjacent to each other and showed insulator and enhancer activities, respectively, in reporter assays. We designated these genomic regions as the <em>Ccnb1ip1</em> insulator and the <em>Ccnb1ip1</em> enhancer. The <em>Ccnb1ip1</em> insulator showed enhancer-blocking activity in the luciferase assays and barrier activity in the colony formation assays. Further examination of the <em>Ccnb1ip1</em> locus in other mammalian species revealed that the insulator and enhancer are highly conserved among a wide variety of species, and are located immediately upstream of the transcriptional start site of <em>Ccnb1ip1</em>. These newly identified cis-elements may be involved in transcriptional regulation of <em>Ccnb1ip1</em>, which is important in meiotic crossing-over and G2/M transition of the mitotic cell cycle.</p>', 'date' => '2015-06-25', 'pmid' => 'http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481373/', 'doi' => '10.1371/journal.pone.0131204', 'modified' => '2016-03-30 10:47:38', 'created' => '2016-03-30 10:47:38', 'ProductsPublication' => array( 'id' => '592', 'product_id' => '1849', 'publication_id' => '2875' ) ) $externalLink = ' <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481373/" target="_blank"><i class="fa fa-external-link"></i></a>'include - APP/View/Products/view.ctp, line 755 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 963 ProductsController::slug() - APP/Controller/ProductsController.php, line 1052 ReflectionMethod::invokeArgs() - [internal], line ?? Controller::invokeAction() - CORE/Cake/Controller/Controller.php, line 491 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 193 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 118
Notice (8): Undefined variable: message [APP/View/Products/view.ctp, line 755]Code Context<!-- BEGIN: REQUEST_FORM MODAL -->
<div id="request_formModal" class="reveal-modal medium" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog">
<?= $this->element('Forms/simple_form', array('solution_of_interest' => $solution_of_interest, 'header' => $header, 'message' => $message, 'campaign_id' => $campaign_id)) ?>
$viewFile = '/home/website-server/www/app/View/Products/view.ctp' $dataForView = array( 'language' => 'en', 'meta_keywords' => '', 'meta_description' => 'LowCell# ChIP kit protein A x48', 'meta_title' => 'LowCell# ChIP kit protein A x48', 'product' => array( 'Product' => array( 'id' => '1849', 'antibody_id' => null, 'name' => 'LowCell# ChIP kit protein A', 'description' => '<p>The LowCell# ChIP kit protein A is one of Diagenode old generation ChIP kits, still present in the catalogue. At present we highly recommend our new generation <strong>True MicroChIP kit</strong> with optimized reagents and protocol to enable successful <strong>ChIP/ChIP-seq</strong> on as few as <strong>10 000 cells</strong>. Read more about our <a href="https://www.diagenode.com/en/p/true-microchip-kit-x16-16-rxns">True MicroChIP kit</a>.</p> <p><span> </span></p>', 'label1' => 'Characteristics', 'info1' => '<p>The LowCell# ChIP kit has been validated using chromatin sheared by sonication using the Bioruptor<sup>®</sup>. The Kit includes a DNA purifying slurry for a fast method to purify your IP’d material (for qPCR analysis).</p>', 'label2' => '', 'info2' => '', 'label3' => '', 'info3' => '', 'format' => '48 rxns', 'catalog_number' => 'C01010072', 'old_catalog_number' => 'kch-maglow-A48', 'sf_code' => 'C01010072-', 'type' => 'RFR', 'search_order' => '04-undefined', 'price_EUR' => '1100', 'price_USD' => '1185', 'price_GBP' => '1005', 'price_JPY' => '188700', 'price_CNY' => '', 'price_AUD' => '2965', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => '0000-00-00', 'slug' => 'lowcell-chip-kit-protein-a-x48-48-rxns', 'meta_title' => 'LowCell# ChIP kit protein A x48', 'meta_keywords' => '', 'meta_description' => 'LowCell# ChIP kit protein A x48', 'modified' => '2019-05-17 11:02:05', 'created' => '2015-06-29 14:08:20', 'locale' => 'eng' ), 'Antibody' => array( 'host' => '*****', 'id' => null, 'name' => null, 'description' => null, 'clonality' => null, 'isotype' => null, 'lot' => null, 'concentration' => null, 'reactivity' => null, 'type' => null, 'purity' => null, 'classification' => null, 'application_table' => null, 'storage_conditions' => null, 'storage_buffer' => null, 'precautions' => null, 'uniprot_acc' => null, 'slug' => null, 'meta_keywords' => null, 'meta_description' => null, 'modified' => null, 'created' => null, 'select_label' => null ), 'Slave' => array( (int) 0 => array( [maximum depth reached] ) ), 'Group' => array( 'Group' => array( [maximum depth reached] ), 'Master' => array( [maximum depth reached] ), 'Product' => array( [maximum depth reached] ) ), 'Related' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ) ), 'Application' => array( (int) 0 => array( [maximum depth reached] ) ), 'Category' => array( (int) 0 => array( [maximum depth reached] ) ), 'Document' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ) ), 'Feature' => array(), 'Image' => array( (int) 0 => array( [maximum depth reached] ) ), 'Promotion' => array(), 'Protocol' => array(), 'Publication' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ), (int) 8 => array( [maximum depth reached] ), (int) 9 => array( [maximum depth reached] ), (int) 10 => array( [maximum depth reached] ), (int) 11 => array( [maximum depth reached] ), (int) 12 => array( [maximum depth reached] ), (int) 13 => array( [maximum depth reached] ), (int) 14 => array( [maximum depth reached] ), (int) 15 => array( [maximum depth reached] ), (int) 16 => array( [maximum depth reached] ), (int) 17 => array( [maximum depth reached] ), (int) 18 => array( [maximum depth reached] ), (int) 19 => array( [maximum depth reached] ), (int) 20 => array( [maximum depth reached] ), (int) 21 => array( [maximum depth reached] ), (int) 22 => array( [maximum depth reached] ), (int) 23 => array( [maximum depth reached] ), (int) 24 => array( [maximum depth reached] ), (int) 25 => array( [maximum depth reached] ), (int) 26 => array( [maximum depth reached] ), (int) 27 => array( [maximum depth reached] ), (int) 28 => array( [maximum depth reached] ), (int) 29 => array( [maximum depth reached] ), (int) 30 => array( [maximum depth reached] ) ), 'Testimonial' => array(), 'Area' => array(), 'SafetySheet' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ) ) ), 'meta_canonical' => 'https://www.diagenode.com/en/p/lowcell-chip-kit-protein-a-x48-48-rxns' ) $language = 'en' $meta_keywords = '' $meta_description = 'LowCell# ChIP kit protein A x48' $meta_title = 'LowCell# ChIP kit protein A x48' $product = array( 'Product' => array( 'id' => '1849', 'antibody_id' => null, 'name' => 'LowCell# ChIP kit protein A', 'description' => '<p>The LowCell# ChIP kit protein A is one of Diagenode old generation ChIP kits, still present in the catalogue. At present we highly recommend our new generation <strong>True MicroChIP kit</strong> with optimized reagents and protocol to enable successful <strong>ChIP/ChIP-seq</strong> on as few as <strong>10 000 cells</strong>. Read more about our <a href="https://www.diagenode.com/en/p/true-microchip-kit-x16-16-rxns">True MicroChIP kit</a>.</p> <p><span> </span></p>', 'label1' => 'Characteristics', 'info1' => '<p>The LowCell# ChIP kit has been validated using chromatin sheared by sonication using the Bioruptor<sup>®</sup>. The Kit includes a DNA purifying slurry for a fast method to purify your IP’d material (for qPCR analysis).</p>', 'label2' => '', 'info2' => '', 'label3' => '', 'info3' => '', 'format' => '48 rxns', 'catalog_number' => 'C01010072', 'old_catalog_number' => 'kch-maglow-A48', 'sf_code' => 'C01010072-', 'type' => 'RFR', 'search_order' => '04-undefined', 'price_EUR' => '1100', 'price_USD' => '1185', 'price_GBP' => '1005', 'price_JPY' => '188700', 'price_CNY' => '', 'price_AUD' => '2965', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => '0000-00-00', 'slug' => 'lowcell-chip-kit-protein-a-x48-48-rxns', 'meta_title' => 'LowCell# ChIP kit protein A x48', 'meta_keywords' => '', 'meta_description' => 'LowCell# ChIP kit protein A x48', 'modified' => '2019-05-17 11:02:05', 'created' => '2015-06-29 14:08:20', 'locale' => 'eng' ), 'Antibody' => array( 'host' => '*****', 'id' => null, 'name' => null, 'description' => null, 'clonality' => null, 'isotype' => null, 'lot' => null, 'concentration' => null, 'reactivity' => null, 'type' => null, 'purity' => null, 'classification' => null, 'application_table' => null, 'storage_conditions' => null, 'storage_buffer' => null, 'precautions' => null, 'uniprot_acc' => null, 'slug' => null, 'meta_keywords' => null, 'meta_description' => null, 'modified' => null, 'created' => null, 'select_label' => null ), 'Slave' => array( (int) 0 => array( 'id' => '96', 'name' => 'C01010072', 'product_id' => '1849', 'modified' => '2016-02-19 11:06:54', 'created' => '2016-02-19 11:06:54' ) ), 'Group' => array( 'Group' => array( 'id' => '96', 'name' => 'C01010072', 'product_id' => '1849', 'modified' => '2016-02-19 11:06:54', 'created' => '2016-02-19 11:06:54' ), 'Master' => array( 'id' => '1849', 'antibody_id' => null, 'name' => 'LowCell# ChIP kit protein A', 'description' => '<p>The LowCell# ChIP kit protein A is one of Diagenode old generation ChIP kits, still present in the catalogue. At present we highly recommend our new generation <strong>True MicroChIP kit</strong> with optimized reagents and protocol to enable successful <strong>ChIP/ChIP-seq</strong> on as few as <strong>10 000 cells</strong>. Read more about our <a href="https://www.diagenode.com/en/p/true-microchip-kit-x16-16-rxns">True MicroChIP kit</a>.</p> <p><span> </span></p>', 'label1' => 'Characteristics', 'info1' => '<p>The LowCell# ChIP kit has been validated using chromatin sheared by sonication using the Bioruptor<sup>®</sup>. The Kit includes a DNA purifying slurry for a fast method to purify your IP’d material (for qPCR analysis).</p>', 'label2' => '', 'info2' => '', 'label3' => '', 'info3' => '', 'format' => '48 rxns', 'catalog_number' => 'C01010072', 'old_catalog_number' => 'kch-maglow-A48', 'sf_code' => 'C01010072-', 'type' => 'RFR', 'search_order' => '04-undefined', 'price_EUR' => '1100', 'price_USD' => '1185', 'price_GBP' => '1005', 'price_JPY' => '188700', 'price_CNY' => '', 'price_AUD' => '2965', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => '0000-00-00', 'slug' => 'lowcell-chip-kit-protein-a-x48-48-rxns', 'meta_title' => 'LowCell# ChIP kit protein A x48', 'meta_keywords' => '', 'meta_description' => 'LowCell# ChIP kit protein A x48', 'modified' => '2019-05-17 11:02:05', 'created' => '2015-06-29 14:08:20' ), 'Product' => array( (int) 0 => array( [maximum depth reached] ) ) ), 'Related' => array( (int) 0 => array( 'id' => '1787', 'antibody_id' => null, 'name' => 'Bioruptor<sup>®</sup> Pico sonication device', 'description' => '<p><a href="https://go.diagenode.com/bioruptor-upgrade"><img src="https://www.diagenode.com/img/banners/banner-br-trade.png" /></a></p> <p>The Bioruptor® Pico (2013-2019) represented a breakthrough for shearing micro-volumes of 5 μl to larger volumes of up to 2 ml. <span>The new generation keeps the features you like the most and bring even more innovation. Check it now:</span></p> <center><span></span></center><center><a href="https://www.diagenode.com/p/bioruptorpico2"> <img alt="New Bioruptor Pico" src="https://www.diagenode.com/img/product/shearing_technologies/new-pico-product-banner.jpg" /></a></center> <p></p> <p><span>Watch our short video about the Bioruptor Pico and how it can help you accomplish perfect shearing for any application including chromatin shearing, DNA shearing for NGS, unmatched DNA extraction from FFPE samples, RNA shearing, protein extraction, and much more.</span></p> <p> <script>// <![CDATA[ (function(){var qs,js,q,s,d=document,gi=d.getElementById,ce=d.createElement,gt=d.getElementsByTagName,id='typef_orm',b='https://s3-eu-west-1.amazonaws.com/share.typeform.com/';if(!gi.call(d,id)){js=ce.call(d,'script');js.id=id;js.src=b+'share.js';q=gt.call(d,'script')[0];q.parentNode.insertBefore(js,q)}id=id+'_';if(!gi.call(d,id)){qs=ce.call(d,'link');qs.rel='stylesheet';qs.id=id;qs.href=b+'share-button.css';s=gt.call(d,'head')[0];s.appendChild(qs,s)}})() // ]]></script> </p> <center><iframe width="560" height="315" src="https://www.youtube.com/embed/ckLc4owudIM" frameborder="0" allowfullscreen="allowfullscreen"></iframe></center><center> <p></p> </center><center><a href="https://www.diagenode.com/en/pages/osha"><img src="https://www.diagenode.com/img/banners/banner-osha-580.jpg" width="635" height="243" /></a></center> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div>', 'label1' => 'User manual ', 'info1' => '<p><a href="https://www.diagenode.com/files/products/shearing_technology/bioruptor/Bioruptor_pico_cooler_manual.pdf">Download</a></p> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div>', 'label2' => 'Recommended settings for DNA shearing with Bioruptor® Pico', 'info2' => '<p>Follow our guidelines and find the good parameters for your expected DNA size: <a href="https://pybrevet.typeform.com/to/o8cQfM">DNA shearing with the Bioruptor® Pico</a></p> <p></p> <p> <script>// <![CDATA[ (function(){var qs,js,q,s,d=document,gi=d.getElementById,ce=d.createElement,gt=d.getElementsByTagName,id='typef_orm',b='https://s3-eu-west-1.amazonaws.com/share.typeform.com/';if(!gi.call(d,id)){js=ce.call(d,'script');js.id=id;js.src=b+'share.js';q=gt.call(d,'script')[0];q.parentNode.insertBefore(js,q)}id=id+'_';if(!gi.call(d,id)){qs=ce.call(d,'link');qs.rel='stylesheet';qs.id=id;qs.href=b+'share-button.css';s=gt.call(d,'head')[0];s.appendChild(qs,s)}})() // ]]></script> </p> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div>', 'label3' => 'Available chromatin shearing kits', 'info3' => '<p>It is important to establish optimal conditions to shear crosslinked chromatin to get the correct fragment sizes needed for ChIP. Usually this process requires both optimizing sonication conditions as well as optimizing SDS concentration, which is laborious. With the Chromatin Shearing Optimization Kits, optimization is fast and easy - we provide optimization reagents with varying concentrations of SDS. Moreover, our Chromatin Shearing Optimization Kits can be used for the optimization of chromatin preparation with our kits for ChIP.</p> <table style="width: 925px;"> <tbody> <tr valign="middle"> <td style="width: 213px;"></td> <td style="text-align: center; width: 208px;"><strong><a href="../p/chromatin-shearing-optimization-kit-low-sds-100-million-cells">Chromatin Shearing Kit Low SDS (for Histones)</a></strong></td> <td style="text-align: center; width: 180px;"><strong><a href="../p/chromatin-shearing-optimization-kit-low-sds-for-tfs-25-rxns">Chromatin Shearing Kit Low SDS (for TF)</a></strong></td> <td style="text-align: center; width: 154px;"><strong><a href="../p/chromatin-shearing-optimization-kit-high-sds-100-million-cells">Chromatin Shearing Kit High SDS</a></strong></td> <td style="text-align: center; width: 155px;"><strong><a href="../p/chromatin-shearing-plant-chip-seq-kit">Chromatin Shearing Kit (for Plant)</a></strong></td> </tr> <tr style="background-color: #fff;" valign="middle"> <td style="width: 213px;"> <p style="text-align: left;"><strong>SDS concentration</strong></p> </td> <td style="text-align: center; width: 208px;"> <p style="text-align: center;">< 0.1%</p> </td> <td style="text-align: center; width: 180px;"> <p style="text-align: center;">0.2%</p> </td> <td style="text-align: center; width: 154px;"> <p style="text-align: center;">1%</p> </td> <td style="text-align: center; width: 155px;"> <p style="text-align: center;">0.5%</p> </td> </tr> <tr style="background-color: #fff;" valign="middle"> <td style="width: 213px;"> <p style="text-align: left;"><strong>Nuclei isolation</strong></p> </td> <td style="text-align: center; width: 208px;"> <p style="text-align: center;">Yes</p> </td> <td style="text-align: center; width: 180px;"> <p style="text-align: center;">Yes</p> </td> <td style="text-align: center; width: 154px;"> <p style="text-align: center;">No</p> </td> <td style="text-align: center; width: 155px;"> <p style="text-align: center;">Yes</p> </td> </tr> <tr style="background-color: #fff;" valign="middle"> <td style="width: 213px;"> <p style="text-align: left;"><strong>Allows for shearing of... cells/tissue</strong></p> </td> <td style="text-align: center; width: 208px;"> <p style="text-align: center;">100 million cells</p> </td> <td style="text-align: center; width: 180px;"> <p style="text-align: center;">100 million cells</p> </td> <td style="text-align: center; width: 154px;"> <p style="text-align: center;">100 million cells</p> </td> <td style="text-align: center; width: 155px;"> <p style="text-align: center;">up to 25 g of tissue</p> </td> </tr> <tr style="background-color: #fff;" valign="middle"> <td style="width: 213px;"> <p style="text-align: left;"><strong>Corresponding to shearing buffers from</strong></p> </td> <td style="text-align: center; width: 208px;"> <p style="text-align: center;"><a href="../p/ideal-chip-seq-kit-x24-24-rxns">iDeal ChIP-seq kit for Histones</a></p> <p style="text-align: center;"><a href="https://www.diagenode.com/en/p/manual-chipmentation-kit-for-histones-24-rxns">ChIPmentation Kit for Histones</a></p> </td> <td style="text-align: center; width: 180px;"> <p style="text-align: center;"><a href="../p/ideal-chip-seq-kit-for-transcription-factors-x24-24-rxns">iDeal ChIP-seq Kit for Transcription Factors</a></p> <p style="text-align: center;"><a href="../p/ideal-chip-qpcr-kit">iDeal ChIP qPCR kit</a></p> </td> <td style="text-align: center; width: 154px;"> <p style="text-align: center;"><a href="../p/true-microchip-kit-x16-16-rxns">True MicroChIP kit</a></p> </td> <td style="text-align: center; width: 155px;"> <p style="text-align: center;"><a href="../p/universal-plant-chip-seq-kit-x24-24-rxns">Universal Plant <br />ChIP-seq kit</a></p> </td> </tr> </tbody> </table> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div>', 'format' => '1 unit', 'catalog_number' => 'B01060010', 'old_catalog_number' => '', 'sf_code' => 'B01060010-', 'type' => 'ACC', 'search_order' => '00-Machine', 'price_EUR' => '22700', 'price_USD' => '26250', 'price_GBP' => '20150', 'price_JPY' => '3291500', 'price_CNY' => 'Discontinued', 'price_AUD' => '65625', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => true, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => '0000-00-00', 'slug' => 'bioruptor-pico-sonication-device', 'meta_title' => 'Bioruptor® Pico sonication device for RNA,Chromatin and DNA shearing for Next-Generation-Sequencing | Diagenode', 'meta_keywords' => 'Bioruptor, sonication, Next-Generation-Sequencing,DNA shearing,Protein extraction', 'meta_description' => 'An all-in-one shearing system Ideal for DNA shearing for Next-Generation-Sequencing,Chromatin shearing,RNA shearing,Protein extraction from tissues and cells and FFPE DNA extraction', 'modified' => '2021-07-14 13:47:33', 'created' => '2015-06-29 14:08:20', 'ProductsRelated' => array( [maximum depth reached] ), 'Image' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '1819', 'antibody_id' => null, 'name' => 'DiaMag 0.2ml - magnetic rack', 'description' => '<p>The DiaMag02 is a powerful magnet which has been designed for controlled and rapid isolation of your DNA bound to magnetic beads. It allows for processing 16 samples at a time.</p>', 'label1' => '', 'info1' => '', 'label2' => '', 'info2' => '', 'label3' => '', 'info3' => '', 'format' => '1 unit', 'catalog_number' => 'B04000001', 'old_catalog_number' => 'kch-816-001', 'sf_code' => 'B04000001-', 'type' => 'ACC', 'search_order' => '04-undefined', 'price_EUR' => '230', 'price_USD' => '225', 'price_GBP' => '205', 'price_JPY' => '40700', 'price_CNY' => '', 'price_AUD' => '565', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => '0000-00-00', 'slug' => 'diamag02-magnetic-rack-1-unit', 'meta_title' => 'DiaMag02 - magnetic rack', 'meta_keywords' => '', 'meta_description' => 'DiaMag02 - magnetic rack', 'modified' => '2019-06-11 16:27:35', 'created' => '2015-06-29 14:08:20', 'ProductsRelated' => array( [maximum depth reached] ), 'Image' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '2173', 'antibody_id' => '115', 'name' => 'H3K4me3 polyclonal antibody ', 'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone H3 containing the trimethylated lysine 4 (H3K4me3), using a KLH-conjugated synthetic peptide.</span></p> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script>', 'label1' => 'Validation Data', 'info1' => '<div class="row"> <div class="small-6 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig1-ChIP.jpg" /></center></div> <div class="small-6 columns"> <p><small><strong>Figure 1. ChIP results obtained with the Diagenode antibody directed against H3K4me3</strong><br />ChIP assays were performed using human K562 cells, the Diagenode antibody against H3K4me3 (cat. No. C15410003) and optimized PCR primer pairs for qPCR. ChIP was performed with the iDeal ChIP-seq kit (cat. No. C01010051), using sheared chromatin from 500,000 cells. A titration consisting of 0.5, 1, 2 and 5 µg of antibody per ChIP experiment was analyzed. IgG (1 µg/IP) was used as a negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes GAPDH and EIF4A2, used as positive controls, and for the inactive MYOD1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p> </div> </div> <div class="row"> <div class="small-12 columns"><center>A.<img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig2a-ChIP-seq.jpg" width="800" /></center><center>B.<img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig2b-ChIP-seq.jpg" width="800" /></center><center>C.<img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig2c-ChIP-seq.jpg" width="800" /></center><center>D.<img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig2d-ChIP-seq.jpg" width="800" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H3K4me3</strong><br />ChIP was performed on sheared chromatin from 1 million HeLaS3 cells using 1 µg of the Diagenode antibody against H3K4me3 (cat. No. C15410003) as described above. The IP'd DNA was subsequently analysed on an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer's instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 600 kb region of the X-chromosome (figure 2A and B) and in two regions surrounding the GAPDH and EIF4A2 positive control genes, respectively (figure 2C and D). These results clearly show an enrichment of the H3K4 trimethylation at the promoters of active genes.</small></p> </div> </div> <div class="row"> <div class="small-12 columns"><center>A.<img src="https://www.diagenode.com/img/product/antibodies/C15410003-cuttag-a.png" width="800" /></center></div> <div class="small-12 columns"><center>B.<img src="https://www.diagenode.com/img/product/antibodies/C15410003-cuttag-b.png" width="800" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 3. Cut&Tag results obtained with the Diagenode antibody directed against H3K4me3</strong><br />CUT&TAG (Kaya-Okur, H.S., Nat Commun 10, 1930, 2019) was performed on 50,000 K562 cells using 0.5 µg of the Diagenode antibody against H3K4me3 (cat. No. C15410003) and the Diagenode pA-Tn5 transposase (C01070001). The libraries were subsequently analysed on an Illumina NextSeq 500 sequencer (2x75 paired-end reads) according to the manufacturer's instructions. The tags were aligned to the human genome (hg19) using the BWA algorithm. Figure 3 shows the peak distribution in 2 genomic regions surrounding the FOS gene on chromosome 14 and the ACTB gene on chromosome 7 (figure 3A and B, respectively).</small></p> </div> </div> <div class="row"> <div class="small-6 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig3-ELISA.jpg" width="350" /></center><center></center><center></center><center></center><center></center></div> <div class="small-6 columns"> <p><small><strong>Figure 4. Determination of the antibody titer</strong><br />To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H3K4me3 (cat. No. C15410003). The antigen used was a peptide containing the histone modification of interest. By plotting the absorbance against the antibody dilution (Figure 4), the titer of the antibody was estimated to be 1:11,000.</small></p> </div> </div> <div class="row"> <div class="small-6 columns"><img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig4-DB.jpg" /></div> <div class="small-6 columns"> <p><small><strong>Figure 5. Cross reactivity tests using the Diagenode antibody directed against H3K4me3</strong><br />To test the cross reactivity of the Diagenode antibody against H3K4me3 (cat. No. C15410003), a Dot Blot analysis was performed with peptides containing other histone modifications and the unmodified H3K4. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:2,000. Figure 5A shows a high specificity of the antibody for the modification of interest.</small></p> </div> </div> <div class="row"> <div class="small-4 columns"><img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig5-WB.jpg" /></div> <div class="small-8 columns"> <p><small><strong>Figure 6. Western blot analysis using the Diagenode antibody directed against H3K4me3</strong><br />Western blot was performed on whole cell extracts (40 µg, lane 1) from HeLa cells, and on 1 µg of recombinant histone H3 (lane 2) using the Diagenode antibody against H3K4me3 (cat. No. C15410003). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right; the marker (in kDa) is shown on the left.</small></p> </div> </div> <div class="row"> <div class="small-12 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig6-if.jpg" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 7. Immunofluorescence using the Diagenode antibody directed against H3K4me3</strong><br />HeLa cells were stained with the Diagenode antibody against H3K4me3 (cat. No. C15410003) and with DAPI. Cells were fixed with 4% formaldehyde for 20’ and blocked with PBS/TX-100 containing 5% normal goat serum. The cells were immunofluorescently labelled with the H3K4me3 antibody (left) diluted 1:200 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa568 or with DAPI (middle), which specifically labels DNA. The right picture shows a merge of both stainings.</small></p> </div> </div> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script>', 'label2' => '', 'info2' => '<p>Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called "histone code". Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Methylation of histone H3K4 is associated with activation of gene transcription.</p> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script>', 'label3' => '', 'info3' => '<p></p> <script src="chrome-extension://hhojmcideegachlhfgfdhailpfhgknjm/web_accessible_resources/index.js"></script>', 'format' => '50 µg', 'catalog_number' => 'C15410003-50', 'old_catalog_number' => 'pAb-003-050', 'sf_code' => 'C15410003-D001-000581', 'type' => 'FRE', 'search_order' => '03-Antibody', 'price_EUR' => '460', 'price_USD' => '450', 'price_GBP' => '410', 'price_JPY' => '67700', 'price_CNY' => '', 'price_AUD' => '1125', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => 'January 8, 2021', 'slug' => 'h3k4me3-polyclonal-antibody-premium-50-ug-50-ul', 'meta_title' => 'H3K4me3 polyclonal antibody - Premium', 'meta_keywords' => '', 'meta_description' => 'H3K4me3 polyclonal antibody - Premium', 'modified' => '2022-06-29 14:42:46', 'created' => '2015-06-29 14:08:20', 'ProductsRelated' => array( [maximum depth reached] ), 'Image' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '2264', 'antibody_id' => '121', 'name' => 'H3K9me3 Antibody', 'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone<strong> H3 containing the trimethylated lysine 9</strong> (<strong>H3K9me3</strong>), using a KLH-conjugated synthetic peptide.</span></p>', 'label1' => 'Validation Data', 'info1' => '<div class="row"> <div class="small-6 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410193-ChIP-Fig1.png" /></center></div> <div class="small-6 columns"> <p><small><strong>Figure 1. ChIP results obtained with the Diagenode antibody directed against H3K9me3</strong><br />ChIP assays were performed using human HeLa cells, the Diagenode antibody against H3K9me3 (cat. No. C15410193) and optimized PCR primer sets for qPCR. ChIP was performed on sheared chromatin from 1 million HeLaS3 cells using the “iDeal ChIP-seq” kit (cat. No. C01010051). A titration of the antibody consisting of 0.5, 1, 2, and 5 µg per ChIP experiment was analysed. IgG (1 µg/IP) was used as negative IP control. QPCR was performed with primers for the heterochromatin marker Sat2 and for the ZNF510 gene, used as positive controls, and for the promoters of the active EIF4A2 and GAPDH genes, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis).</small></p> </div> </div> <div class="row"> <div class="small-12 columns"><center>A.<img src="https://www.diagenode.com/img/product/antibodies/C15410193-ChIP-Fig2a.png" width="700" /></center><center>B.<img src="https://www.diagenode.com/img/product/antibodies/C15410193-ChIP-Fig2b.png" width="700" /></center><center>C.<img src="https://www.diagenode.com/img/product/antibodies/C15410193-ChIP-Fig2c.png" width="700" /></center><center>D.<img src="https://www.diagenode.com/img/product/antibodies/C15410193-ChIP-Fig2d.png" width="700" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H3K9me3</strong><br />ChIP was performed with 0.5 µg of the Diagenode antibody against H3K9me3 (cat. No. C15410193) on sheared chromatin from 1,000,000 HeLa cells using the “iDeal ChIP-seq” kit as described above. The IP'd DNA was subsequently analysed on an Illumina HiSeq 2000. Library preparation, cluster generation and sequencing were performed according to the manufacturer's instructions. The 50 bp tags were aligned to the human genome using the BWA algorithm. Figure 2A shows the signal distribution along the long arm of chromosome 19 and a zoomin to an enriched region containing several ZNF repeat genes. The arrows indicate two satellite repeat regions which exhibit a stronger signal. Figures 2B, 2C and 2D show the enrichment along the ZNF510 positive control target and at the H19 and KCNQ1 imprinted genes.</small></p> </div> </div> <div class="row"> <div class="small-12 columns"><center>A.<img src="https://www.diagenode.com/img/product/antibodies/C15410193-CT-Fig3a.png" width="700" /></center><center>B.<img src="https://www.diagenode.com/img/product/antibodies/C15410193-CT-Fig3b.png" width="700" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 3. Cut&Tag results obtained with the Diagenode antibody directed against H3K9me3</strong><br />CUT&TAG (Kaya-Okur, H.S., Nat Commun 10, 1930, 2019) was performed on 50,000 K562 cells using 1 µg of the Diagenode antibody against H3K9me3 (cat. No. C15410193) and the Diagenode pA-Tn5 transposase (C01070001). The libraries were subsequently analysed on an Illumina NextSeq 500 sequencer (2x75 paired-end reads) according to the manufacturer's instructions. The tags were aligned to the human genome (hg19) using the BWA algorithm. Figure 3 shows the peak distribution in a genomic regions on chromosome 1 containing several ZNF repeat genes and in a genomic region surrounding the KCNQ1 imprinting control gene on chromosome 11 (figure 3A and B, respectively).</small></p> </div> </div> <div class="row"> <div class="small-6 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410193-Elisa-Fig4.png" /></center></div> <div class="small-6 columns"> <p><small><strong>Figure 4. Determination of the antibody titer</strong><br />To determine the titer of the antibody, an ELISA was performed using a serial dilution of the antibody directed against human H3K9me3 (cat. No. C15410193) in antigen coated wells. The antigen used was a peptide containing the histone modification of interest. By plotting the absorbance against the antibody dilution (Figure 4), the titer of the antibody was estimated to be 1:87,000.</small></p> </div> </div> <div class="row"> <div class="small-4 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410193-DB-Fig5.png" /></center></div> <div class="small-8 columns"> <p><small><strong>Figure 5. Cross reactivity tests using the Diagenode antibody directed against H3K9me3</strong><br />A Dot Blot analysis was performed to test the cross reactivity of the Diagenode antibody against H3K9me3 (cat. No. C15410193) with peptides containing other modifications and unmodified sequences of histone H3 and H4. One hundred to 0.2 pmol of the peptide containing the respective histone modification were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 5 shows a high specificity of the antibody for the modification of interest.</small></p> </div> </div> <div class="row"> <div class="small-4 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410193-WB-Fig6.png" /></center></div> <div class="small-8 columns"> <p><small><strong>Figure 6. Western blot analysis using the Diagenode antibody directed against H3K9me3</strong><br />Western blot was performed on whole cell (25 µg, lane 1) and histone extracts (15 µg, lane 2) from HeLa cells, and on 1 µg of recombinant histone H2A, H2B, H3 and H4 (lane 3, 4, 5 and 6, respectively) using the Diagenode antibody against H3K9me3 (cat. No. C15410193). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right; the marker (in kDa) is shown on the left.</small></p> </div> </div> <div class="row"> <div class="small-12 columns"><center><img src="https://www.diagenode.com/img/product/antibodies/C15410193-IF-Fig7.png" /></center></div> </div> <div class="row"> <div class="small-12 columns"> <p><small><strong>Figure 7. Immunofluorescence using the Diagenode antibody directed against H3K9me3</strong><br />HeLa cells were stained with the Diagenode antibody against H3K9me3 (cat. No. C15410193) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labelled with the H3K9me3 antibody (middle) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The left panel shows staining of the nuclei with DAPI. A merge of both stainings is shown on the right.</small></p> </div> </div>', 'label2' => 'Target Description', 'info2' => '<p>Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Trimethylation of histone H3K9 is associated with inactive genomic regions, satellite repeats and ZNF gene repeats.</p>', 'label3' => '', 'info3' => '', 'format' => '50 μg', 'catalog_number' => 'C15410193', 'old_catalog_number' => 'pAb-193-050', 'sf_code' => 'C15410193-D001-000581', 'type' => 'FRE', 'search_order' => '03-Antibody', 'price_EUR' => '460', 'price_USD' => '450', 'price_GBP' => '410', 'price_JPY' => '67700', 'price_CNY' => '0', 'price_AUD' => '1125', 'country' => 'ALL', 'except_countries' => 'None', 'quote' => false, 'in_stock' => false, 'featured' => false, 'no_promo' => false, 'online' => true, 'master' => true, 'last_datasheet_update' => 'December 12, 2017', 'slug' => 'h3k9me3-polyclonal-antibody-premium-50-mg', 'meta_title' => 'H3K9me3 Antibody - ChIP-seq Grade (C15410193) | Diagenode', 'meta_keywords' => '', 'meta_description' => 'H3K9me3 (Histone H3 trimethylated at lysine 9) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, CUT&Tag, ELISA, DB, WB and IF. Specificity confirmed by Peptide array assay. Batch-specific data available on the website. Sample size available.', 'modified' => '2021-10-20 09:55:53', 'created' => '2015-06-29 14:08:20', 'ProductsRelated' => array( [maximum depth reached] ), 'Image' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '2268', 'antibody_id' => '70', 'name' => 'H3K27me3 Antibody', 'description' => '<p>Polyclonal antibody raised in rabbit against the region of histone <strong>H3 containing the trimethylated lysine 27</str